
Enumeration and Succinct Encoding

of AVL Trees

J. Chizewer, S. Melczer, J.I. Munro, A. Pun

June 17, 2024

1 / 21

Motivation - Storing Binary Trees

1

2

4

6 7

9

3

5

8

Naive Approach

Pointers

Nodes

2, 3

1

4, ∅
2

∅, 5
3

6, 7

4

8, ∅
5

∅, ∅
6

9, ∅
7

∅, ∅
8

∅, ∅
9

2 / 21

Storing Binary Trees

1

2

4

6 7

9

3

5

8

Naive Approach

Pointers

Nodes

2, 3

1

4, ∅
2

∅, 5
3

6, 7

4

8, ∅
5

∅, ∅
6

9, ∅
7

∅, ∅
8

∅, ∅
9

2 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

B(z) =
1−

√
1− 4z

2z

Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

B(z) =
1−

√
1− 4z

2z

Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

B(z) =
1−

√
1− 4z

2z

Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

B(z) =
1−

√
1− 4z

2z

Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

What is the minimum storage requirement?

Let’s enumerate!

B(z) =
1−

√
1− 4z

2z
Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

What is the minimum storage requirement?

Let’s enumerate!

B(z) =
1−

√
1− 4z

2z
Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

What is the minimum storage requirement?

Let’s enumerate!

B(z) =
1−

√
1− 4z

2z

Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

What is the minimum storage requirement?

Let’s enumerate!

B(z) =
1−

√
1− 4z

2z
Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string

3 / 21

Storing Binary Search Trees

Naive approach storage requirements for n nodes

▶ Each pointer requires O(log n) bits.

▶ There are 2n pointers.

▶ Total Requirement: O(n log n).

What is the minimum storage requirement?

Let’s enumerate!

B(z) =
1−

√
1− 4z

2z
Use analytic tools to get asymptotics of the coefficients:

[zn]B(z) =
4n√
πn3

(1 + o(1))

So log2

(
4n√
πn3

(1 + o(1))
)
= 2n + o(n) bits are needed to give

each tree a unique string
3 / 21

Succinct Encodings

Definition
We call an encoding succinct if it uses the information-theoretic
minimum number of bits

4 / 21

Succinct Encoding – Binary Trees

1

2

4

8 9

14

3

7

10

5 / 21

Succinct Encoding – Binary Trees

1

2

4

8 9

14

3

7

10

Step 1: Make sure every internal node has exactly two children by
adding external nodes.

5 / 21

Succinct Encoding – Binary Trees

1

2

4

8

12 13

9

14

18 19

15

5

3

6 7

10

16 17

11

= internal node = external node

5 / 21

Succinct Encoding – Binary Trees

1

2

4

8

12 13

9

14

18 19

15

5

3

6 7

10

16 17

11

= internal node = external node

Step 2: Traverse the tree in level order, writing 1 for internal nodes
and 0 for external nodes.

5 / 21

Succinct Encoding – Binary Trees

1

2

4

8

12 13

9

14

18 19

15

5

3

6 7

10

16 17

11

= internal node = external node

Bitmap: 1

1

1

2

1

3

1

4

0

5

0

6

1

7

1

8

1

9

1

10

0

11

0

12

0

13

1

14

0

15

0

16

0

17

0

18

0

19

5 / 21

Succinct Encoding Analysis

How many bits did we use?

▶ We started with n nodes.

▶ We added n + 1 nodes.

▶ We used 1 bit per node in the new tree.

6 / 21

Succinct Encoding Analysis

How many bits did we use?

▶ We started with n nodes.

▶ We added n + 1 nodes.

▶ We used 1 bit per node in the new tree.

6 / 21

Succinct Encoding Analysis

How many bits did we use?

▶ We started with n nodes.

▶ We added n + 1 nodes.

▶ We used 1 bit per node in the new tree.

6 / 21

Succinct Encoding Analysis

How many bits did we use?

▶ We started with n nodes.

▶ We added n + 1 nodes.

▶ We used 1 bit per node in the new tree.

6 / 21

Succinct Encoding Analysis

How many bits did we use?

▶ We started with n nodes.

▶ We added n + 1 nodes.

▶ We used 1 bit per node in the new tree.

That is 2n + 1 bits which is succinct.

6 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)

▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)

▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)

▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)

▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)

▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)
▶ But worst case O(n).

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)
▶ But worst case O(n).

Can we construct a tree with shorter depth?

AVL Trees

7 / 21

What if we care about more than just storage costs?

In general, binary trees can be very inefficient.

▶ A random binary tree on n nodes has average depth
√
n.

▶ That means O(
√
n) comparisons on average to find a node.

▶ Average depth in binary search tree is O(log n)
▶ But worst case O(n).

Can we construct a tree with shorter depth?

AVL Trees

7 / 21

AVL Trees

Definition
An AVL tree is a binary tree where every node satisfies the property
that its left and right subtrees differ in height by at most one

8 / 21

AVL Trees

Definition
An AVL tree is a binary tree where every node satisfies the property
that its left and right subtrees differ in height by at most one

8 / 21

Enumerating AVL Trees

Is our encoding for binary trees still succinct for AVL trees?

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Is our encoding for binary trees still succinct for AVL trees?

Let’s enumerate!

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.

Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

Start with a symbolic class:

A0 = •, A1 = • × •, Ah+2 = Ah+1 × (Ah+1 + 2Ah)

A =
⋃
h≥0

Ah

Where Ah is the class of AVL trees with height h.

Compute generating functions:

A0(z) = z , A1(z) = z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Where Ah(z) is the GF for AVL trees with height h.
Note: enumeration is harder because we are recursing on height
but enumerating by size.

9 / 21

Enumerating AVL Trees

A0(z) = z , A1(z) = 2z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Perform singularity analysis

When does A(z) diverge?

Find the fixed point for the recurrence:

C = C (C + 2C) =⇒ C = 1/3

A(z) diverges when Ah(z) ≥ 1/3 and Ah+1(z) ≥ 1/3.

When does A(z) converge?

10 / 21

Enumerating AVL Trees

A0(z) = z , A1(z) = 2z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Perform singularity analysis

When does A(z) diverge? Find the fixed point for the recurrence:

C = C (C + 2C) =⇒ C = 1/3

A(z) diverges when Ah(z) ≥ 1/3 and Ah+1(z) ≥ 1/3.

When does A(z) converge?

10 / 21

Enumerating AVL Trees

A0(z) = z , A1(z) = 2z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Perform singularity analysis

When does A(z) diverge? Find the fixed point for the recurrence:

C = C (C + 2C) =⇒ C = 1/3

A(z) diverges when Ah(z) ≥ 1/3 and Ah+1(z) ≥ 1/3.

When does A(z) converge?

10 / 21

Enumerating AVL Trees

A0(z) = z , A1(z) = 2z2, Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z))

A(z) =
∑
h≥0

Ah(z)

Perform singularity analysis

When does A(z) diverge? Find the fixed point for the recurrence:

C = C (C + 2C) =⇒ C = 1/3

A(z) diverges when Ah(z) ≥ 1/3 and Ah+1(z) ≥ 1/3.

When does A(z) converge?

10 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Values αh for even h (red) and odd h (blue).

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

11 / 21

Enumerating AVL Trees

Let αh denote the unique positive solution to Ah(z) = 1/3

Lemma (C., Melczer, Munro, Pun, 2023)

The limit α = limh→∞ αh = 0.5219 . . . exists.

Proof sketch.

1. Show that αh is strictly decreasing for odd h, strictly
increasing for even h.

2. Show for all h that α2h+1 > α2h.

3. Show
lim
h→∞

α2h+1 = lim
h→∞

α2h

Lemma (C., Melczer, Munro, Pun, 2023)

A(z) converges in the disk |z | < α

11 / 21

Enumerating AVL Trees

Theorem (C., Melczer, Munro, Pun, 2023)

There are α−n θ(n) AVL trees on n nodes where θ(n) is
sub-exponential.

Proof sketch.

1. Apply the previous lemmas to conclude α is the singularity of
smallest modulus

2. Conclude 1/α is the exponential growth of an.

12 / 21

Enumerating AVL Trees

Theorem (C., Melczer, Munro, Pun, 2023)

There are α−n θ(n) AVL trees on n nodes where θ(n) is
sub-exponential.

Proof sketch.

1. Apply the previous lemmas to conclude α is the singularity of
smallest modulus

2. Conclude 1/α is the exponential growth of an.

12 / 21

Enumerating AVL Trees

Theorem (C., Melczer, Munro, Pun, 2023)

There are α−n θ(n) AVL trees on n nodes where θ(n) is
sub-exponential.

Proof sketch.

1. Apply the previous lemmas to conclude α is the singularity of
smallest modulus

2. Conclude 1/α is the exponential growth of an.

12 / 21

Enumerating AVL Trees

Theorem (C., Melczer, Munro, Pun, 2023)

There are α−n θ(n) AVL trees on n nodes where θ(n) is
sub-exponential.

Proof sketch.

1. Apply the previous lemmas to conclude α is the singularity of
smallest modulus

2. Conclude 1/α is the exponential growth of an.

12 / 21

Generalizing the Main Theorem

Let F =
⊔∞

h=0Fh such that Fh(z) are non-constant and

Fh(z) = f (Fh−1(z),Fh−2(z), . . . ,Fh−c(z)) for all h ≥ c

where c is a positive integer and f has non-negative coefficients.

Theorem (C., Melczer, Munro, Pun, 2023)

If f has positive fixed point B and βh is the positive root of
B = Fh(z) then the limit β = limh→∞ βh exists1 and there are
β−n θ(n) objects in F of size n where θ(n) is sub-exponential.

1f must satisfy an additional technical condition
13 / 21

Generalizing the Main Theorem

Let F =
⊔∞

h=0Fh such that Fh(z) are non-constant and

Fh(z) = f (Fh−1(z),Fh−2(z), . . . ,Fh−c(z)) for all h ≥ c

where c is a positive integer and f has non-negative coefficients.

Theorem (C., Melczer, Munro, Pun, 2023)

If f has positive fixed point B and βh is the positive root of
B = Fh(z) then the limit β = limh→∞ βh exists1 and there are
β−n θ(n) objects in F of size n where θ(n) is sub-exponential.

1f must satisfy an additional technical condition
13 / 21

Back to Encoding AVL Trees

Using the enumeration result, we know that

log2
(
α−n θ(n)

)
= (0.938 . . .) n + o(n)

bits are needed.

Can we improve on the 2n + 1 bits used in the general binary tree
encoding?

14 / 21

Back to Encoding AVL Trees

Using the enumeration result, we know that

log2
(
α−n θ(n)

)
= (0.938 . . .) n + o(n)

bits are needed.

Can we improve on the 2n + 1 bits used in the general binary tree
encoding?

14 / 21

Succinct Encoding for AVL Trees

n = 32

15 / 21

Succinct Encoding for AVL Trees

n = 32

Identify subtree τ (in red) of all nodes whose parents are the roots
of large subtrees.

15 / 21

Succinct Encoding for AVL Trees

n = 32

Name the shapes of subtrees rooted at leaves (in blue) of τ (in
red/blue)

15 / 21

Succinct Encoding for AVL Trees

n = 32

00 = 01 = 10 =

15 / 21

Succinct Encoding for AVL Trees

n = 32

00 = 01 = 10 =

Write τ , codeword mapping, and names of leaf trees in leaf order.
15 / 21

Succinct Encoding for AVL Trees

Algorithm Summary

1. Identify subtree τ of all nodes whose parents are the roots of
large subtrees.

2. The leaves of τ are the roots of small subtrees.

3. Write a unique code word for each subtree in a lookup table.

4. Store τ , the lookup table, and the codewords in order.

16 / 21

Succinct Encoding for AVL Trees

Algorithm Summary

1. Identify subtree τ of all nodes whose parents are the roots of
large subtrees.

2. The leaves of τ are the roots of small subtrees.

3. Write a unique code word for each subtree in a lookup table.

4. Store τ , the lookup table, and the codewords in order.

16 / 21

Succinct Encoding for AVL Trees

Algorithm Summary

1. Identify subtree τ of all nodes whose parents are the roots of
large subtrees.

2. The leaves of τ are the roots of small subtrees.

3. Write a unique code word for each subtree in a lookup table.

4. Store τ , the lookup table, and the codewords in order.

16 / 21

Succinct Encoding for AVL Trees

Algorithm Summary

1. Identify subtree τ of all nodes whose parents are the roots of
large subtrees.

2. The leaves of τ are the roots of small subtrees.

3. Write a unique code word for each subtree in a lookup table.

4. Store τ , the lookup table, and the codewords in order.

16 / 21

Succinct Encoding for AVL Trees

Algorithm Summary

1. Identify subtree τ of all nodes whose parents are the roots of
large subtrees.

2. The leaves of τ are the roots of small subtrees.

3. Write a unique code word for each subtree in a lookup table.

4. Store τ , the lookup table, and the codewords in order.

16 / 21

Succinct Encoding for AVL Trees

Why does it work?

1. The lookup table has size o(n) because there are few distinct
shapes

2. The tree τ has size o(n)

3. The names of the codewords are asymptotically optimal in
bits per node used.

17 / 21

Succinct Encoding for AVL Trees

Why does it work?

1. The lookup table has size o(n) because there are few distinct
shapes

2. The tree τ has size o(n)

3. The names of the codewords are asymptotically optimal in
bits per node used.

17 / 21

Succinct Encoding for AVL Trees

Why does it work?

1. The lookup table has size o(n) because there are few distinct
shapes

2. The tree τ has size o(n)

3. The names of the codewords are asymptotically optimal in
bits per node used.

17 / 21

Succinct Encoding for AVL Trees

Why does it work?

1. The lookup table has size o(n) because there are few distinct
shapes

2. The tree τ has size o(n)

3. The names of the codewords are asymptotically optimal in
bits per node used.

17 / 21

Generalizing the Encoding

Definition
A class T of trees is weakly tame2 if

1. All subtrees of a tree in the class are also in the class

2. The subtree τ defined previously satisfies |τ | = o(n)

3. log Tn = c · n + o(n) for some constant c .

Theorem (C., Melczer, Munro, Pun, 2023)

There exists a static succinct encoding for any weakly tame class
of trees.

2Following the work of J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach
Benkner, and Sebastian Wild.

18 / 21

Generalizing the Encoding

Definition
A class T of trees is weakly tame2 if

1. All subtrees of a tree in the class are also in the class

2. The subtree τ defined previously satisfies |τ | = o(n)

3. log Tn = c · n + o(n) for some constant c .

Theorem (C., Melczer, Munro, Pun, 2023)

There exists a static succinct encoding for any weakly tame class
of trees.

2Following the work of J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach
Benkner, and Sebastian Wild.

18 / 21

Conclusion

Theorem (C., Melczer, Munro, Pun, 2023)

If f has positive fixed point B and βh is the positive root of
B = Fh(z) then the limit β = limh→∞ βh exists3 and there are
β−n θ(n) objects in F of size n where θ(n) is sub-exponential.

Theorem (C., Melczer, Munro, Pun, 2023)

There exists a static succinct encoding for any weakly tame class
of trees.

3f must satisfy an additional technical condition
19 / 21

Conclusion

Theorem (C., Melczer, Munro, Pun, 2023)

If f has positive fixed point B and βh is the positive root of
B = Fh(z) then the limit β = limh→∞ βh exists3 and there are
β−n θ(n) objects in F of size n where θ(n) is sub-exponential.

Theorem (C., Melczer, Munro, Pun, 2023)

There exists a static succinct encoding for any weakly tame class
of trees.

3f must satisfy an additional technical condition
19 / 21

Future Work

1. Construct dynamic succinct encodings

2. Apply enumeration tools to other balanced data structures.

20 / 21

Future Work

1. Construct dynamic succinct encodings

2. Apply enumeration tools to other balanced data structures.

20 / 21

Thank you!

21 / 21

	Succinct Encoding of Binary Trees
	AVL Trees
	Trees

