Matching Algorithms in the Sparse Stochastic Block Model

Anna Brandenberger, Byron Chin, Nathan Sheffield and Divya Shyamal

MIT

AofA 2024
A MOTIVATING FABLE: HIRING A TEAM

n candidates
A MOTIVATING FABLE: HIRING A TEAM

n candidates

$n/2$ backend jobs

$n/2$ frontend jobs
A motivating fable: hiring a team

Experienced Developers

5/n

1/n

Recent Graduates

0

1/n
A motivating fable: hiring a team

Experienced Developers

Recent Graduates

5/n

1/n

0

1/n
A motivating fable: hiring a team
Defining the model

Definition (Stochastic Block Model)

Given a $q \times q$ matrix M of probabilities, associated SBM has

- q vertex classes of size n/q
- each edge (u, v) with independent probability M_{ij}, where i and j are u and v’s respective classes.

We’re interested in when all entries are c_{ij}/n for some constants c_{ij}.
Online Matching
Defining the model

Definition (Online Matching)

At each step: A random left vertex has all incident edges revealed, and the algorithm must choose which (if any) revealed edge to add to the matching. This choice cannot be undone.
DEFINING THE MODEL

Definition (Online Matching)

At each step: A random left vertex has all incident edges revealed, and the algorithm must choose which (if any) revealed edge to add to the matching. This choice cannot be undone.

Goal: find a strategy with a good *expected competitive ratio* – i.e. that maximizes the ratio of number of people you expect to match versus number of people a hirer with full info in advance could expect to match.
Approach 1: GREEDY

GREEDY: add a random available edge (if one exists)
Approach 1: GREEDY

GREEDY: add a random available edge (if one exists)

Definition (Equitable SBM)

A SBM is *equitable* if all classes have equal average degree. That is, there’s some constant c such that $\sum_j c_{ij} = c$ for all i.

The case of bipartite Erdős–Rényi is a result of Mastin–Jaillet
Approach 1: GREEDY

GREEDY: add a random available edge (if one exists)

Definition (Equitable SBM)

A SBM is *equitable* if all classes have equal average degree. That is, there’s some constant c such that $\sum_j c_{ij} = c$ for all i.

Theorem

*In equitable SBMs, *GREEDY* achieves expected matching size $\left(1 - \frac{\ln(2-e^{-c})}{c}\right)n$, and this is optimal among online algorithms.*

the case of bipartite Erdős–Rényi is a result of Mastin–Jaillet
WHERE GREEDY FAILS
Approach 2: DEGREEDY

DEGREEDY: match to the available class with smallest expected degree
APPROACH 2: DEGREEDY

DEGREEDY: match to the available class with smallest expected degree

Proposition

When there is only one left class, DEGREEDY is optimal among online algorithms.
WHERE DEGREEDY FAILS
APPROACH 3: SHORTSIGHTED

SHORTSIGHTED: match to the available class that maximizes probability of a match being available on the next step
Approach 3: SHORTSIGHTED

SHORTSIGHTED: match to the available class that maximizes probability of a match being available on the next step

Also optimal in certain cases (e.g. equitable), and performs well empirically on examples that we tried. However...
WHERE SHORTSIGHTED FAILS
WHERE SHORTSIGHTED FAILS

SHORTSIGHTED: 0.5749n
Prefer blue jobs until 88% of vertices arrived: 0.5756n
APPROACH 4: BRUTEFORCE

BRUTEFORCE: At the beginning, precompute optimal decision for every possible configuration (i.e. timestep, number of unmatched vertices in each class) by dynamic programming.
Approach 4: Bruteforce

Bruteforce: At the beginning, precompute optimal decision for every possible configuration (i.e. timestep, number of unmatched vertices in each class) by dynamic programming.

Optimal. But runtime $\Omega(n^{q+1})$, and appears difficult to analyze.
Offline Matching
Karp–Sipser Algorithm

- If there exists a vertex of degree 1, add its edge to the matching.
Karp–Sipser Algorithm

- If there exists a vertex of degree 1, choose one at random and add its edge to the matching.
Karp–Sipser Algorithm

- If there exists a vertex of degree 1, choose one at random and add its edge to the matching.
Karp–Sipser Algorithm

- If \exists vertex of degree 1, choose one at random and add its edge to the matching.
Karp–Sipser Algorithm

- If there exists a vertex of degree 1, choose one at random and add its edge to the matching.
- Otherwise, add any random edge.
Karp–Sipser Algorithm

- If \(\exists \) vertex of degree 1, choose one at random and add its edge to the matching.
- Otherwise, add any random edge
Karp–Sipser Algorithm

- If \exists vertex of degree 1, choose one at random and add its edge to the matching.
- Otherwise, add any random edge
Karp–Sipser Behaviour in Erdős–Rényi Case

<table>
<thead>
<tr>
<th>Optimality</th>
<th>Phase Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (Karp, Sipser)</td>
<td>Theorem (Karp, Sipser)</td>
</tr>
<tr>
<td>On an Erdős–Rényi graph with edge probability $\frac{c}{n}$, whp Karp–Sipser constructs a matching within $o(n)$ of optimal.</td>
<td>On an Erdős–Rényi graph with edge probability $\frac{c}{n}$, whp the Karp–Sipser core has size</td>
</tr>
<tr>
<td></td>
<td>$o(n)$ if $c < e$</td>
</tr>
<tr>
<td></td>
<td>$\Theta(n)$ if $c > e$</td>
</tr>
</tbody>
</table>
Comparisons to SBM Case

Optimality

- The Karp–Sipser is optimal in some specific cases, including the equitable case, which has the same matching number as Erdős–Rényi.
- It is not optimal on general SBM graphs.

Phase Transition

- The Karp–Sipser core is $o(n)$ whenever average degree is $< e$ in all classes.
- It is also $o(n)$ for more cases.
WHERE KARP–SIPSER FAILS

\[c_{ab} = c_{cd} = 10 \]

\[c_{bc} = 100 \]
WHERE KARP–SIPSER FAILS

\[c_{ab} = c_{cd} = 10 \]

\[c_{bc} = 100 \]
Where Karp–Sipser Fails

\[c_{ab} = c_{cd} = 10 \]

\[c_{bc} = 100 \]
Critical Threshold

All of the edges from both

Subcritical
QUESTIONS

- Is there a description of the critical threshold?
- Is a label-aware version of Karp–Sipser optimal?
- More generally, can we describe a procedure that, given the probability matrix of a SBM, determines the asymptotic matching number?
- In the online setting, does SHORTSIGHTED always achieve competitive ratio close to BRUTE-FORCE?
- Does there exist a linear-time online algorithm with the same competitive ratio as BRUTE-FORCE?

Thank you!