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DEFINING THE MODEL

Definition (Stochastic Block Model)
Given a g x g matrix M of probabilities, associated SBM has

» g vertex classes of size n/q

» each edge (u,v) with independent probability M;;, where i
and j are u and v’s respective classes.

We're interested in when all entries are c;;/n for some constants
Ci]'.
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At each step: A random left vertex has all incident edges
revealed, and the algorithm must choose which (if any)
revealed edge to add to the matching. This choice cannot be
undone.



DEFINING THE MODEL

Definition (Online Matching)

At each step: A random left vertex has all incident edges
revealed, and the algorithm must choose which (if any)
revealed edge to add to the matching. This choice cannot be
undone.

Goal: find a strategy with a good expected competitive ratio —
i.e. that maximizes the ratio of number of people you expect to
match versus number of people a hirer with full info in
advance could expect to match.
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APPROACH 1: GREEDY

GREEDY: add a random available edge (if one exists)

Definition (Equitable SBM)
A SBM is equitable if all classes have equal average degree.

That is, there’s some constant ¢ such that Ej cij = c for all i.

Theorem
In equitable SBMs, GREEDY achieves expected matching size

(1 - @) n, and this is optimal among online algorithms.

*the case of bipartite Erd6s—Rényi is a result of Mastin—Jaillet
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APPROACH 2: DEGREEDY

DEGREEDY: match to the available class with smallest
expected degree



APPROACH 2: DEGREEDY

DEGREEDY: match to the available class with smallest
expected degree

Proposition

When there is only one left class, DEGREEDY is optimal among
online algorithms.
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APPROACH 3: SHORTSIGHTED

SHORTSIGHTED: match to the available class that maximizes
probability of a match being available on the next step



APPROACH 3: SHORTSIGHTED

SHORTSIGHTED: match to the available class that maximizes
probability of a match being available on the next step

Also optimal in certain cases (e.g. equitable), and performs well
empirically on examples that we tried. However...
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SHORTSIGHTED: 0.5749n
Prefer blue jobs until 88% of vertices arrived: 0.5756n



APPROACH 4: BRUTEFORCE

BRUTEFORCE: At the beginning, precompute optimal
decision for every possible configuration (i.e. timestep, number
of unmatched vertices in each class) by dynamic programming.



APPROACH 4: BRUTEFORCE

BRUTEFORCE: At the beginning, precompute optimal
decision for every possible configuration (i.e. timestep, number
of unmatched vertices in each class) by dynamic programming.

Optimal. But runtime Q(n7+1), and appears difficult to analyze.
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KARP-SIPSER ALGORITHM

» If 3 vertex of degree 1, choose one at random and add its
edge to the matching.

» Otherwise, add any random edge

)



KARP-SIPSER BEHAVIOUR IN ERDOS-RENYI CASE

Optimality

Theorem (Karp, Sipser)
On an Erd0s—Rényi graph with
edge probability ., whp
Karp-Sipser constructs a

matching within o(n) of optimal.

Phase Transition

Theorem (Karp, Sipser)
On an Erd6s—Rényi graph with
edge probability -, whp the
Karp-Sipser core has size

» o(n)ifc<e

> O(n)ifc>e



COMPARISONS TO SBM CASE

Optimality

> The Karp-Sipser is Phase Transition
optimal in some specific
cases, including the
equitable case, which has
the same matching

number as Erdés—-Rényi . » Itis also o(n) for more
cases

» The Karp-Sipser core is
o(n) whenever average
degree is < ¢ in all classes

» It is not optimal on
general SBM graphs




WHERE KARP-SIPSER FAILS

Cap = Coq = 10

Cphe = 100

N\

o \ PR
2SN

> /A
K KRB AN
5 \ /"_‘)§<(/\
7P y,
%Y




WHERE KARP-SIPSER FAILS

Cap = Coq = 10

>

ZaNs
R o\

~




WHERE KARP-SIPSER FAILS

Cap = Coq = 10




CRITICAL THRESHOLD

All of the edges from both

Subcritical



QUESTIONS

v

Is there a description of the critical threshold?
Is a label-aware version of Karp-Sipser optimal?

More generally, can we describe a procedure that, given
the probability matrix of a SBM, determines the
asysmptotic matching number?

In the online setting, does SHORTSIGHTED always
achieve competitive ratio close to BRUTE-FORCE?
Does there exist a linear-time online algorithm with the
same competitive ratio as BRUTE-FORCE?

Thank you!



