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DEFINING THE MODEL

Definition (Stochastic Block Model)

Given a q ⇥ q matrix M of probabilities, associated SBM has
I q vertex classes of size n/q

I each edge (u, v) with independent probability Mij, where i

and j are u and v’s respective classes.

We’re interested in when all entries are cij/n for some constants
cij.



Online Matching



DEFINING THE MODEL

Definition (Online Matching)

At each step: A random left vertex has all incident edges
revealed, and the algorithm must choose which (if any)
revealed edge to add to the matching. This choice cannot be
undone.

Goal: find a strategy with a good expected competitive ratio –
i.e. that maximizes the ratio of number of people you expect to
match versus number of people a hirer with full info in
advance could expect to match.
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APPROACH 1: GREEDY

GREEDY: add a random available edge (if one exists)

Definition (Equitable SBM)

A SBM is equitable if all classes have equal average degree.
That is, there’s some constant c such that

P
j
cij = c for all i.

Theorem
In equitable SBMs, GREEDY achieves expected matching size⇣

1 � ln(2�e�c)
c

⌘
n, and this is optimal among online algorithms.

*the case of bipartite Erdős–Rényi is a result of Mastin–Jaillet
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WHERE GREEDY FAILS



APPROACH 2: DEGREEDY

DEGREEDY: match to the available class with smallest
expected degree

Proposition

When there is only one left class, DEGREEDY is optimal among

online algorithms.



APPROACH 2: DEGREEDY

DEGREEDY: match to the available class with smallest
expected degree

Proposition

When there is only one left class, DEGREEDY is optimal among

online algorithms.



WHERE DEGREEDY FAILS



APPROACH 3: SHORTSIGHTED

SHORTSIGHTED: match to the available class that maximizes
probability of a match being available on the next step

Also optimal in certain cases (e.g. equitable), and performs well
empirically on examples that we tried. However...
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SHORTSIGHTED: 0.5749n

Prefer blue jobs until 88% of vertices arrived: 0.5756n
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APPROACH 4: BRUTEFORCE

BRUTEFORCE: At the beginning, precompute optimal
decision for every possible configuration (i.e. timestep, number
of unmatched vertices in each class) by dynamic programming.

Optimal. But runtime ⌦(nq+1), and appears difficult to analyze.
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Offline Matching



KARP–SIPSER ALGORITHM

I If 9 vertex of degree 1, add its edge to the matching.
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KARP–SIPSER BEHAVIOUR IN ERDŐS–RÉNYI CASE

Optimality

Theorem (Karp, Sipser)

On an Erdős–Rényi graph with

edge probability
c

n
, whp

Karp–Sipser constructs a

matching within o(n) of optimal.

Phase Transition

Theorem (Karp, Sipser)

On an Erdős–Rényi graph with

edge probability
c

n
, whp the

Karp–Sipser core has size

I o(n) if c < e

I ⇥(n) if c > e



COMPARISONS TO SBM CASE

Optimality

I The Karp–Sipser is
optimal in some specific
cases, including the
equitable case, which has
the same matching
number as Erdős–Rényi .

I It is not optimal on
general SBM graphs

Phase Transition

I The Karp–Sipser core is
o(n) whenever average
degree is < e in all classes

I It is also o(n) for more
cases



WHERE KARP–SIPSER FAILS

cab = ccd = 10

cbc = 100
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CRITICAL THRESHOLD



QUESTIONS

I Is there a description of the critical threshold?
I Is a label-aware version of Karp–Sipser optimal?
I More generally, can we describe a procedure that, given

the probability matrix of a SBM, determines the
asysmptotic matching number?

I In the online setting, does SHORTSIGHTED always
achieve competitive ratio close to BRUTE-FORCE?

I Does there exist a linear-time online algorithm with the
same competitive ratio as BRUTE-FORCE?

Thank you!


