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What are B-trees?

Search trees, i.e. the nodes store keys, sorted by their size.
Nice property: B-trees are balanced.

We consider B-trees of order 2m + 1: a node cannot contain
more than 2m keys. Usually (in this talk) m = 1.
B-trees can be constructed from a list of keys by an insertion
algorithm.
There are two possible ways to generate keys:

Sampled from a continuous probability distribution (e.g.
uniform on [0, 1])
Key sequence is a uniform permutation π ∈ Sn
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History of a B-tree

We are not interested in the exact value of the keys!

•

T1

−→ • •

T2

−→
•

•

•

T3

−→
•

•

• •

T4

−→
• • •

• •

T5

−→
• • • •

• •

T6

−→
•

• •

• • • •

T7

−→

• • • • •

• •

•

T8

−→

• • • • •

• • •

•

T9

Such a sequence (T1,T2, . . . ,Tn) is a history of T = Tn.
Set of all histories for B-trees with n keys: Hm(n)
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The bijection

Theorem

Let n,m ≥ 1. There is a bijection between Hm(n) and the set of
all trees Hn satisfying the following properties:

1 Hn is a rooted plane tree on n vertices, labelled by
{1, . . . , n}, such that along each path from the root to a
leaf, the labels are increasing.

2 The vertices of Hn at heights 2m, 3m + 1, 4m + 2, . . . have
up to two children, all other vertices have at most one child.
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The bijection

Proposition

Let Hn be the historic tree corresponding to a history
(T1, . . . ,Tn) of B-trees of order 2m + 1 under the bijection in
Theorem 1. Then, the following holds:

1 For any n ≥ 1, the number of external vertices of Hn equals
the number of leaves of Tn.

2 For any n ≥ 1, the number of branchings in Hn equals the
number of keys in Tn that are not stored in leaves.

3 Let n ≥ 2m + 1. Consider the i-th external vertex v of Hn

from the left, and let s be the number of internal vertices in
Hn strictly between v and the closest branching above v .
Then, the i-th leaf of Tn from the left contains exactly
m + s keys.
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A consequence

π(Hn) := {π ∈ Sn : π yields the history belonging to Hn}

Proposition

Let Hn be a (2m + 1)-historic tree having b ≥ 1 branchings. Let
s1, . . . , sb+1 be the number of internal vertices in Hn strictly
between the i-th external vertex and its closest branching. Then

|π(Hn)| =
(
(2m + 1)!
(m!)2

)b

·
b+1∏
i=1

(m + si )!. (1)
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Counting histories

For convenience, remove the first m vertices from a historic tree
⇝ reduced historic tree.

This is amenable to analytic combinatorics:

H(x) =
∑
n≥0

hn
n!

xn

where hn is the number of reduced historic trees with n internal
vertices.
For m = 1: Recursive structure gives

H ′′(x) = H(x)2 H(0) = H ′(0) = 1.

For general m:

H(m+1)(x) = H(x)2 H(0) = H ′(0) = · · · = H(m)(0) = 1.
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Counting histories, m = 1

H ′′(x) = H(x)2 H(0) = H ′(0) = 1

This was already analysed (Bodini, Dien, Fontaine, Genitrini,
Hwang, 2016) and has explicit solutions using the Weierstrass
elliptic function: Dominant singularity at ρ ≈ 2.3758705509 of
order 2. Hence

hn
n!

∼ 6nρ−n−2.
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Counting histories, general m

H(m+1)(x) = H(x)2 H(0) = H ′(0) = · · · = H(m)(0) = 1

DE not explicitly solvable. IF H(x) has a dominant singularity at
ρm, then

hn
n!

∼ (2m + 1)!
(m!)2

nmρ−n−m−1
m .

We conjecture that this is indeed true.
Numerical computations suggest

m 2 3 4 5 6
ρ−1
m 3.7746 5.1792 6.5857 7.9928 9.3999
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Tree statistics, m = 1

We can weigh historic trees Hn by |π(Hn)|. Weighted e.g.f. for
reduced historic trees satisfies

W ′′(x) = 6W 2(x), W (0) = 1,W ′(0) = 2.

Explicit solution:

W (x) =
∑
n≥0

(n + 1)!
n!

xn =
1

(1 − x)2

We can also include the number of external vertices e(T ):

W (x , u) =
∑
T

1
|T |!x

|T |ue(T ).
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Tree statistics, m = 1

With this bivariate e.g.f.:

W ′′(x , u) = 6W (x , u)2, W (0, u) = u,W ′(0, u) = 2u

With singularity analysis + quasi-power theorem: CLT for e(T ).
Moments can be computed via W1(x) =

∂
∂uW (x , u)

∣∣∣
u=1

.

Theorem

Let Ln be the number of leaves in a 2-3-tree built from n random
keys. Then we have E(Ln) = 3

7(n+ 1) and Var(Ln) = 12
637(n+ 1)

for n > 11. Moreover, the central limit theorem

Ln − E(Ln)√
Var(Ln)

d→ N(0, 1)

holds.
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Sets of permutations

Aim: Given a B-tree T , how do we get

π(T ) = {π ∈ Sn : π yields T}?

(And also π(Hn))

Idea: If T has height 0, then π(T ) = Sn. Recurse over height.
Why could this work?
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Pruning B-trees
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Pruning B-trees

•

T
(1)
1 = T p

3

−→ • •

T
(1)
2 = T p

5

−→
•

•

•

T
(1)
3 = T p

8

−→
• •

•

•

T
(1)
4 = T p

9

This looks again like a history of a (smaller) B-tree!

Therefore, there is a permutation π(1) that produced this
history...
...and in fact, we can obtain π(1) exactly from the history of T .
Here, π(1) = (1, 3, 4, 2).



A bijection
for B-trees

B-trees

The bijection

Some
counting

Sets of
permutations

Conclusions

Pruning B-trees

•

T
(1)
1 = T p

3

−→ • •

T
(1)
2 = T p

5

−→
•

•

•

T
(1)
3 = T p

8

−→
• •

•

•

T
(1)
4 = T p

9

This looks again like a history of a (smaller) B-tree!
Therefore, there is a permutation π(1) that produced this
history...

...and in fact, we can obtain π(1) exactly from the history of T .
Here, π(1) = (1, 3, 4, 2).
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Pruning B-trees

•

T
(1)
1 = T p

3

−→ • •

T
(1)
2 = T p

5

−→
•

•

•

T
(1)
3 = T p

8

−→
• •

•

•

T
(1)
4 = T p

9

This looks again like a history of a (smaller) B-tree!
Therefore, there is a permutation π(1) that produced this
history...
...and in fact, we can obtain π(1) exactly from the history of T .
Here, π(1) = (1, 3, 4, 2).
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Algorithm: Overview

Given: T = Tn, and π(1).
Three steps:

1 Take π(1) and T , and lift π(1) to a sequence (Ki1 , . . . ,Kin1
)

of keys from T .
2 Given π(1) and T , produce a historic tree H such that the

pruned history fits with π(1).
3 Given T , H, (Ki1 , . . . ,Kin1

), produce π ∈ π(H).
The algorithm requires choices, different choices lead to different
π; all possibly choices = all permutations that produce T and
respect π(1).
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), produce π ∈ π(H).
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Algorithm: Step 1

•

• • •

• •

•

•

•
π(1) = (1, 3, 4, 2)

In-order traversal reveals that the keys corresponding to π(1) are
(2, 6, 8, 4).
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•
π(1) = (1, 3, 4, 2)

In-order traversal reveals that the keys corresponding to π(1) are
(2, 6, 8, 4).
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Algorithm: Step 2

Build a binary search tree from π(1):
1

3

2 4
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Algorithm: Step 2

Stretch it into a historic tree, and keep track of the insertion
order into the binary search tree:

1

3

2 4
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Algorithm: Step 2

Delete all labels:
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Algorithm: Step 2

Lemma

The digraph G = G (T , π(1)) constructed in this fashion is
acyclic. Any topological labelling of G induces a historic tree H
for T on the black edges. Such H corresponds bijectively to a
history of T that is obtained by all those π ∈ Sn that after
pruning, produce π(1).

We will choose the labelling we already know ;-)
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Algorithm: Step 2

Lemma

The digraph G = G (T , π(1)) constructed in this fashion is
acyclic. Any topological labelling of G induces a historic tree H
for T on the black edges. Such H corresponds bijectively to a
history of T that is obtained by all those π ∈ Sn that after
pruning, produce π(1).

We will choose the labelling we already know ;-)
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Algorithm: Step 3

1

2

3

4

5

6

9

7

8

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {1, 2, 3, 4, 5, 6, 7, 8, 9}
π = (_,_,_,_,_,_,_,_,_)
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9
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8

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {1, 2, 3, 4, 5, 6, 7, 8, 9}
π = (ℓ, s, 2, ℓ, ℓ, ℓ, ℓ, ℓ, ℓ)
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Algorithm: Step 3

1

2

3

4

5

6

9

7

8

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {1, 2, 3, 4, 5, 6, 7, 8, 9}
π = (ℓ, s, 2, ℓ, ℓ, ℓ, ℓ, ℓ, ℓ)
This splits R and π:
R− = {1}, R+ = {3, 4, 5, 6, 7, 8, 9}
π− = (_), π+ = (_,_,_,_,_,_,_)
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Algorithm: Step 3

1

2

3

4

5

6

9

7

8

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {1, 2, 3, 4, 5, 6, 7, 8, 9}
π = (ℓ, 1, 2, ℓ, ℓ, ℓ, ℓ, ℓ, ℓ)
This splits R and π:
R− = {1}, R+ = {3, 4, 5, 6, 7, 8, 9}
π− = (1), π+ = (_,_,_,_,_,_,_)
Let’s follow along with π+; update H.
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Algorithm: Step 3

1

2

3

4

7

5

6

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {3, 4, 5, 6, 7, 8, 9}
π = (_, 1, 2,_,_,_,_,_,_)
=̂(_,_,_,_,_,_,_)
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Algorithm: Step 3

1

2

3

4

7

5

6

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {3, 4, 5, 6, 7, 8, 9}
π = (6, 1, 2,_,_,_,_,_,_)
=̂(6, s, ℓ, s, ℓ, ℓ, s)



A bijection
for B-trees

B-trees

The bijection

Some
counting

Sets of
permutations

Conclusions

Algorithm: Step 3

1

2

3

4

7

5

6

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
R = {3, 4, 5, 6, 7, 8, 9}
π = (6, 1, 2,_,_,_,_,_,_)
=̂(6, s, ℓ, s, ℓ, ℓ, s)

This splits R and π:
R− = {3, 4, 5}, R+ = {7, 8, 9}
π− = (_,_,_), π+ = (_,_,_)
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Algorithm: Step 3

1

2

3

4

7

5

6

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
π = (6, 1, 2, 4,_, 5,_,_, 3)
=̂(6, s, ℓ, s, ℓ, ℓ, s)

Anything goes for π±:
R− = {3, 4, 5}, R+ = {7, 8, 9}
π− = (4, 5, 3), π+ = (7, 9, 8)
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Algorithm: Step 3

1

2

3

4

7

5

6

π(1) = (1, 3, 4, 2)=̂(2, 6, 8, 4)
π = (6, 1, 2, 4, 7, 5, 9, 8, 3)
=̂(6, 4, ℓ, 5, ℓ, ℓ, 3)

Anything goes for π±:
R− = {3, 4, 5}, R+ = {7, 8, 9}
π− = (4, 5, 3), π+ = (7, 9, 8)
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Algorithm: Step 3

1

2

3

4

7

5

6

π = (6, 1, 2, 4, 7, 5, 9, 8, 3)
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Conclusions and outlook

Bijection between histories of B-trees and family of
increasing trees.

Enables new approaches for counting B-trees and for
showing limit theorems for tree statistics.
Algorithmic description of set of permutations that produce
given B-tree or given history.
Many open problems remain!

∼∼∼ FI N ∼∼∼
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