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B-trees can be constructed from a list of keys by an insertion
algorithm.
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Conclusions a/gorlthm

There are two possible ways to generate keys:

B-trees

m Sampled from a continuous probability distribution (e.g.
uniform on [0, 1])

m Key sequence is a uniform permutation 7 € S,
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O Wb

Such a sequence (71, T, ...,

T,) is a history of T = T,.
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Such a sequence (T1, Ta,..., T,) is a history of T = T,.
Set of all histories for B-trees with n keys: .77,(n)
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The bijection

Let nym > 1. There is a bijection between .#,(n) and the set of
all trees H,, satisfying the following properties:
H,, is a rooted plane tree on n vertices, labelled by
{1,...,n}, such that along each path from the root to a
leaf, the labels are increasing.

The vertices of H,, at heights 2m,3m + 1,4m +2,... have
up to two children, all other vertices have at most one child.
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The bijection

Let H,, be the historic tree corresponding to a history
(T1,..., T,) of B-trees of order 2m + 1 under the bijection in
Theorem 1. Then, the following holds:

For any n > 1, the number of external vertices of H, equals
the number of leaves of T,.

For any n > 1, the number of branchings in H, equals the
number of keys in T, that are not stored in leaves.

Let n > 2m + 1. Consider the i-th external vertex v of H,
from the left, and let s be the number of internal vertices in
H,, strictly between v and the closest branching above v.
Then, the i-th leaf of T, from the left contains exactly
m + s keys.
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S iens SL,...,Spy1 be the number of internal vertices in H, strictly
Conclusions between the i-th external vertex and its closest branching. Then

b b+1
) = (O ) I+ @
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This is amenable to analytic combinatorics:
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H(x) = Z P
n>0

where h,, is the number of reduced historic trees with n internal
vertices.
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The bijection hn
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Conclusions Vertices.
For m = 1. Recursive structure gives

H"(x) = H(x)>  H(0) = H'(0) = 1.
For general m:

Hm)(x) = H(x)?  H(0) = H'(0) = --- = HIM(0) = 1.
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fglzr:la:ing
Sets of This was already analysed (Bodini, Dien, Fontaine, Genitrini,

permutations

Hwang, 2016) and has explicit solutions using the Weierstrass
elliptic function: Dominant singularity at p ~ 2.3758705509 of
order 2. Hence

Conclusions

hn ~ 6np "2,
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The bijection
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Tz TP,

We conjecture that this is indeed true.
Numerical computations suggest

m 2 3 4 5 6
pnt | 3.7746 5.1792 6.5857 7.9928 9.3999
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A bijection

for Btrees  \Ne can weigh historic trees H, by |7(H,)|. Weighted e.g.f. for
reduced historic trees satisfies

B-trees

S W”(X) _ 6W2(X); W(O) = 1, W’(O) = 2.
Some
counting EXpI|C|t sOlUtiOn:
Sets of
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Conclusions W(X) = Z Txn - m
n>0

We can also include the number of external vertices e( T):

Z |T| AT
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Tree statistics, m =1

With this bivariate e.g.f.:
W (x,u) = 6W(x,u)?,  W(0,u) =u, W(0,u) =2u

With singularity analysis + quasi-power theorem: CLT for e(T).

Moments can be computed via Wj(x) = 88 W(x, u)‘

‘ l
=

Theorem

Let L, be the number of leaves in a 2-3-tree built from n random
keys. Then we have E(L,) = 3(n+1) and Var(L,) = a5 (n+ 1)
for n > 11. Moreover, the central limit theorem

L, —E(L,) d

Var(L,) MO, 1)

holds.
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Sets of permutations

Aim: Given a B-tree T, how do we get
n(T)={meS,: myields T}?

(And also 7(Hp,))
Idea: If T has height 0, then (T) = S,. Recurse over height.
Why could this work?
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T(l) TIJ T(l)

- 8

This looks again like a history of a (smaller) B-treel!
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Pruning B-trees

@ﬂ@ﬂ@/@\@ A

T(l) Tp T(l)
= 8
This looks again like a history of a (smaller) B-treel!
Therefore, there is a permutation 7(1) that produced this

history...

9
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Conclusions This looks again like a history of a (smaller) B-treel
Therefore, there is a permutation 7(1) that produced this
history...

...and in fact, we can obtain 7(}) exactly from the history of T.
Here, 7(1) = (1,3,4,2).
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Three steps:
Take 7(Y) and T, and lift 7(!) to a sequence (Ki,, ..., Kin, )
of keys from T.
Given 7(1) and T, produce a historic tree H such that the
pruned history fits with 7(1).
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Algorithm: Overview

Given: T = T,, and 7(1).
Three steps:

Take 7() and T, and lift 7 to a sequence (Ki,, ...

of keys from T.

Y Kinl )

Given 7(1) and T, produce a historic tree H such that the
pruned history fits with 7(1).

Given T, H, (Kj, ...

, Ki,, ), produce 7 € m(H).



A bijection
for B-trees

B-trees
The bijection

Some
counting

Sets of
permutations

Conclusions

Algorithm: Overview

Given: T = T,, and 7(1).
Three steps:
Take 7(Y) and T, and lift 7(!) to a sequence (Ki,, ..., Kin, )
of keys from T.

Given 7(1) and T, produce a historic tree H such that the
pruned history fits with 7(1).

Given T, H, (K, ..., K, ), produce € (H).

n
The algorithm requires choices, different choices lead to different
m; all possibly choices = all permutations that produce T and
respect (1),
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In-order traversal reveals that the keys corresponding to 7(1) are
(2,6,8,4).
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Algorithm: Step 2

Build a binary search tree from 7(1):

@

@
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Algorithm: Step 2

Stretch it into a historic tree, and keep track of the insertion
order into the binary search tree:

Om@.
©—0

56 306
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Algorithm: Step 2

Delete all labels:

56 306
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Algorithm: Step 2

The digraph G = G(T, (M) constructed in this fashion is
acyclic. Any topological labelling of G induces a historic tree H
for T on the black edges. Such H corresponds bijectively to a
history of T that is obtained by all those = € S,, that after
pruning, produce (1.
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S The digraph G = G(T, (M) constructed in this fashion is

Sets of acyclic. Any topological labelling of G induces a historic tree H

:r:::::::s for T on the black edges. Such H corresponds bijectively to a
history of T that is obtained by all those = € S,, that after

pruning, produce (1.

We will choose the labelling we already know ;-)
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The bijection

f(())::weting ~~

e o O @ 1) =(1,3,4,2)%(2,6,8,4)

Conclusions R == {172, 3,4,5,6, 7, 8,9}
9 7= (0,5,2,0,0,0,0,1,1)
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Conclusions ThIS Sp|ItS R and T

S R_ = {1}, R. = {3,4,5,6,7,8,9}
© @ T— = (1)’ T+ = (_a vy _)

Let's follow along with 7; update H.
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(1) =(1,3,4,2)2(2,6,8,4)

R ={3,4,5,6,7,8,9}

7T = (67 172’ ) )y Y _)
=(6,s,4,s,0,¢,5)

This splits R and 7:

R_ =1{3,4,5}, R+ ={7,8,9}

T = (_a _7_)7 T+ = (_’ _ _)
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