A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for the evolution of *B*-trees

Fabian Burghart Eindhoven University of Technology

Joint work with

Stephan Wagner TU Graz & Uppsala University

June 18, 2024

Bath, AofA2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

	What are <i>B</i> -trees?
A bijection for <i>B</i> -trees	
B-trees	Search trees, i.e. the nodes store <i>keys</i> , sorted by their size.
The bijection	Nice property: <i>B</i> -trees are balanced.
Some counting	
Sets of permutations	
Conclusions	

What are *B*-trees?

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Search trees, i.e. the nodes store *keys*, sorted by their size. Nice property: *B*-trees are balanced.

We consider *B*-trees of order 2m + 1: a node cannot contain more than 2m keys. Usually (in this talk) m = 1.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のくで

What are *B*-trees?

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Search trees, i.e. the nodes store *keys*, sorted by their size. Nice property: *B*-trees are balanced.

We consider *B*-trees of order 2m + 1: a node cannot contain more than 2m keys. Usually (in this talk) m = 1.

B-trees can be constructed from a list of keys by an *insertion algorithm*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What are *B*-trees?

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Search trees, i.e. the nodes store *keys*, sorted by their size. Nice property: *B*-trees are balanced.

We consider *B*-trees of order 2m + 1: a node cannot contain more than 2m keys. Usually (in this talk) m = 1.

B-trees can be constructed from a list of keys by an *insertion algorithm*.

There are two possible ways to generate keys:

Sampled from a continuous probability distribution (e.g. uniform on [0, 1])

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Key sequence is a uniform permutation $\pi \in S_n$

A bijection for <i>B</i> -trees							
3-trees							
The bijection							
Some							
Sets of permutations			6)				
Conclusions							
	1	$\tau = (6, 1, 2)$	2, 4, 7, 5, 9,	(8,3)			
					49.5.4	=	 ± ∽0
							 ~

bijection B-trees					
es					
bijection					
ing					
tations		(1,6)			
sions					
	$\pi = (0$	6, 1, 2, 4, 7, 5, 9, 8, 3)		
			■ □ ▶	(DF) (문) (문)	- P

Insertion algorithm, m = 1A bijection for B-trees **B**-trees The bijection Some counting Sets of permutations Conclusions $\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

A bijection for <i>B</i> -trees	
B-trees	
The bijection	
Some counting	2
Sets of permutations	(1) $(4,6)$
Conclusions	
	$\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

A bijection for <i>B</i> -trees
B-trees
The bijection
Some counting
Sets of permutations
Conclusions

A bijection for <i>B</i> -trees	
B-trees	
The bijection	
Some counting	2,6
Sets of permutations	
Conclusions	
	$\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

A bijection for <i>B</i> -trees	
B-trees	
The bijection	
Some counting	2,6
Sets of permutations	1 (4,5) 7
Conclusions	
	$\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

A bijection for <i>B</i> -trees
B-trees
The bijection
Some counting
Sets of permutations
Conclusions

 $\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

・ロト・4日ト・4日ト・4日・9000

A bijection for <i>B</i> -trees	
B-trees	
The bijection	
Some counting	2,6
Sets of permutations	
Conclusions	

 $\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

 $\pi = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえぐ

 $\boldsymbol{\pi} = (6, 1, 2, 4, 7, 5, 9, 8, 3)$

History of a *B*-tree

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

We are not interested in the exact value of the keys!

э

History of a *B*-tree

A bijection for B-trees We are not interested in the exact value of the keys! **B**-trees $\underbrace{ \bigcirc}_{T} \xrightarrow{T} \xrightarrow{T} \underbrace{ \bigcirc}_{T} \underbrace{ \odot}_{T} \underbrace{$ The bijection Some T_1 counting T_{i} T_5 Sets of permutations Conclusions $\overline{\mathbf{Q}}$ $\mathbf{\hat{o}}$ •• T_7 T_8 T_{0}

Such a sequence (T_1, T_2, \ldots, T_n) is a *history* of $T = T_n$.

(日)

History of a *B*-tree

The bijection

Some counting

Sets of permutations

Conclusions

We are not interested in the exact value of the keys!

Such a sequence $(T_1, T_2, ..., T_n)$ is a *history* of $T = T_n$. Set of all histories for *B*-trees with *n* keys: $\mathscr{H}_m(n)$

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Theorem

Let $n, m \ge 1$. There is a bijection between $\mathscr{H}_m(n)$ and the set of all trees H_n satisfying the following properties:

H_n is a rooted plane tree on n vertices, labelled by {1,..., n}, such that along each path from the root to a leaf, the labels are increasing.

2 The vertices of H_n at heights 2m, 3m + 1, 4m + 2, ... have up to two children, all other vertices have at most one child.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A bijection
for <i>B</i> -trees
3-trees
The bijection
ome counting
Sets of permutations
Conclusions

A bijection
for <i>B</i> -trees
_
<i>B</i> -trees
The bijection
Some counting
Sets of permutations
Conclusions

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for *B*-trees The bijection Some counting Sets of permutations Conclusions

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Proposition

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Let H_n be the historic tree corresponding to a history (T_1, \ldots, T_n) of B-trees of order 2m + 1 under the bijection in Theorem 1. Then, the following holds:

- **1** For any $n \ge 1$, the number of external vertices of H_n equals the number of leaves of T_n .
- **2** For any $n \ge 1$, the number of branchings in H_n equals the number of keys in T_n that are not stored in leaves.
- S Let n ≥ 2m + 1. Consider the i-th external vertex v of H_n from the left, and let s be the number of internal vertices in H_n strictly between v and the closest branching above v. Then, the i-th leaf of T_n from the left contains exactly m + s keys.

A consequence

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A consequence

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

$\underline{\pi}(H_n) := \{\pi \in S_n : \pi \text{ yields the history belonging to } H_n\}$

Proposition

Let H_n be a (2m + 1)-historic tree having $b \ge 1$ branchings. Let s_1, \ldots, s_{b+1} be the number of internal vertices in H_n strictly between the *i*-th external vertex and its closest branching. Then

$$|\underline{\pi}(H_n)| = \left(\frac{(2m+1)!}{(m!)^2}\right)^b \cdot \prod_{i=1}^{b+1} (m+s_i)!.$$
(1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Counting histories

A bijection for <i>B</i> -trees	For convenience, remove the first m vertices from a historic tree \rightsquigarrow reduced historic tree.
B-trees	
The bijection	
Some counting	
Sets of permutations	
Conclusions	
Counting histories

A bijection for *B*-trees

For convenience, remove the first m vertices from a historic tree \rightsquigarrow reduced historic tree.

This is amenable to analytic combinatorics:

$$H(x) = \sum_{n \ge 0} \frac{h_n}{n!} x^n$$

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

where h_n is the number of reduced historic trees with n internal vertices.

Counting histories

A bijection for *B*-trees

For convenience, remove the first *m* vertices from a historic tree \rightsquigarrow reduced historic tree.

This is amenable to analytic combinatorics:

$$H(x) = \sum_{n \ge 0} \frac{h_n}{n!} x^n$$

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

where h_n is the number of reduced historic trees with n internal vertices.

For m = 1: Recursive structure gives

$$H''(x) = H(x)^2$$
 $H(0) = H'(0) = 1.$

Counting histories

A bijection for *B*-trees

For convenience, remove the first *m* vertices from a historic tree \rightarrow *reduced historic tree*.

This is amenable to analytic combinatorics:

$$H(x) = \sum_{n \ge 0} \frac{h_n}{n!} x^n$$

B-trees The bijection

Some counting

Sets of permutations

Conclusions

where h_n is the number of reduced historic trees with n internal vertices.

For m = 1: Recursive structure gives

$$H''(x) = H(x)^2$$
 $H(0) = H'(0) = 1.$

For general *m*:

$$H^{(m+1)}(x) = H(x)^2$$
 $H(0) = H'(0) = \cdots = H^{(m)}(0) = 1.$

Counting histories, m = 1

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

$$H''(x) = H(x)^2$$
 $H(0) = H'(0) = 1$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Counting histories, m = 1

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

$$H''(x) = H(x)^2$$
 $H(0) = H'(0) = 1$

This was already analysed (Bodini, Dien, Fontaine, Genitrini, Hwang, 2016) and has explicit solutions using the Weierstrass elliptic function: Dominant singularity at $\rho \approx 2.3758705509$ of order 2. Hence

$$\frac{h_n}{n!}\sim 6n\rho^{-n-2}$$

Counting histories, general m

A bijection for *B*-trees

B-trees

$$H^{(m+1)}(x) = H(x)^2$$
 $H(0) = H'(0) = \cdots = H^{(m)}(0) = 1$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

The bijection

Some counting

Sets of permutations

Conclusions

Counting histories, general m

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

$$H^{(m+1)}(x) = H(x)^2$$
 $H(0) = H'(0) = \cdots = H^{(m)}(0) = 1$

DE not explicitly solvable. IF H(x) has a dominant singularity at ρ_m , then

$$\frac{h_n}{n!} \sim \frac{(2m+1)!}{(m!)^2} n^m \rho_m^{-n-m-1}.$$

We conjecture that this is indeed true.

Counting histories, general m

A bijection for *B*-trees

B-trees

 $H^{(m+1)}(x) = H(x)^2$ $H(0) = H'(0) = \cdots = H^{(m)}(0) = 1$

The bijection

Some counting

Sets of permutations

Conclusions

DE not explicitly solvable. IF
$$H(x)$$
 has a dominant singularity at ρ_m , then

$$\frac{h_n}{n!} \sim \frac{(2m+1)!}{(m!)^2} n^m \rho_m^{-n-m-1}.$$

We conjecture that this is indeed true. Numerical computations suggest

т	2	3	4	5	6
ρ_m^{-1}	3.7746	5.1792	6.5857	7.9928	9.3999

A bijection for *B*-trees

We can weigh historic trees H_n by $|\underline{\pi}(H_n)|$. Weighted e.g.f. for reduced historic trees satisfies

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

 $W''(x) = 6W^2(x), \qquad W(0) = 1, W'(0) = 2.$

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

We can weigh historic trees H_n by $|\underline{\pi}(H_n)|$. Weighted e.g.f. for reduced historic trees satisfies

$$W''(x) = 6W^2(x), \qquad W(0) = 1, W'(0) = 2.$$

Explicit solution:

$$W(x) = \sum_{n \ge 0} \frac{(n+1)!}{n!} x^n = \frac{1}{(1-x)^2}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のくで

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

We can weigh historic trees H_n by $|\underline{\pi}(H_n)|$. Weighted e.g.f. for reduced historic trees satisfies

$$W''(x) = 6W^2(x), \qquad W(0) = 1, W'(0) = 2.$$

Explicit solution:

$$W(x) = \sum_{n \ge 0} \frac{(n+1)!}{n!} x^n = \frac{1}{(1-x)^2}$$

We can also include the number of external vertices e(T):

$$W(x,u) = \sum_{T} \frac{1}{|T|!} x^{|T|} u^{e(T)}.$$

A bijection for *B*-trees

With this bivariate e.g.f.:

 $W''(x, u) = 6W(x, u)^2, \qquad W(0, u) = u, W'(0, u) = 2u$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のくで

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

A bijection for *B*-trees

With this bivariate e.g.f.:

$$W''(x, u) = 6W(x, u)^2, \qquad W(0, u) = u, W'(0, u) = 2u$$

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

With singularity analysis + quasi-power theorem: CLT for e(T). Moments can be computed via $W_1(x) = \frac{\partial}{\partial u} W(x, u) \Big|_{u=1}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

A bijection for *B*-trees

With this bivariate e.g.f.:

$$W''(x, u) = 6W(x, u)^2, \qquad W(0, u) = u, W'(0, u) = 2u$$

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

With singularity analysis + quasi-power theorem: CLT for e(T). Moments can be computed via $W_1(x) = \frac{\partial}{\partial u} W(x, u)\Big|_{u=1}$.

Theorem

Let L_n be the number of leaves in a 2-3-tree built from n random keys. Then we have $\mathbb{E}(L_n) = \frac{3}{7}(n+1)$ and $\operatorname{Var}(L_n) = \frac{12}{637}(n+1)$ for n > 11. Moreover, the central limit theorem

$$\frac{L_n - \mathbb{E}(L_n)}{\sqrt{\mathsf{Var}(L_n)}} \stackrel{\mathrm{d}}{\to} N(0, 1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - シへ⊙

holds.

Sets of permutations

Aim: Given a B-tree T, how do we get

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

(And also $\underline{\pi}(H_n)$)

 $\underline{\pi}(T) = \{\pi \in S_n : \pi \text{ yields } T\}?$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のくで

Sets of permutations

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Aim: Given a *B*-tree *T*, how do we get $\underline{\pi}(T) = \{\pi \in S_n : \pi \text{ yields } T\}?$ (And also $\underline{\pi}(H_n)$)

Idea: If T has height 0, then $\underline{\pi}(T) = S_n$. Recurse over height.

Sets of permutations

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

mutations

Conclusions

Aim: Given a *B*-tree *T* , how do we get

$$\underline{\pi}(T) = \{\pi \in S_n : \pi \text{ yields } T\}?$$

(And also $\underline{\pi}(H_n)$) Idea: If T has height 0, then $\underline{\pi}(T) = S_n$. Recurse over height. Why could this work?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえぐ

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This looks again like a history of a (smaller) B-tree!

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This looks again like a history of a (smaller) *B*-tree! Therefore, there is a permutation $\pi^{(1)}$ that produced this history...

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

$$\underbrace{\bullet}_{T_1^{(1)} = T_3^p} \xrightarrow{T_2^{(1)} = T_5^p} \xrightarrow{\bullet}_{T_3^{(1)} = T_8^p} \xrightarrow{\bullet}_{T_4^{(1)} = T_9^p}$$

This looks again like a history of a (smaller) *B*-tree! Therefore, there is a permutation $\pi^{(1)}$ that produced this history...

...and in fact, we can obtain $\pi^{(1)}$ exactly from the history of *T*. Here, $\pi^{(1)} = (1, 3, 4, 2)$.

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Given: $T = T_n$, and $\pi^{(1)}$. Three steps:

Given: $T = T_n$, and $\pi^{(1)}$.


```
B-trees
```

The bijection

Some counting

Sets of permutations

Conclusions

Three steps: **1** Take $\pi^{(1)}$ and T, and lift $\pi^{(1)}$ to a sequence $(K_{i_1}, \ldots, K_{i_{n_1}})$ of keys from T.

A bijection for *B*-trees

```
Given: T = T_n, and \pi^{(1)}.
Three steps:
```

The bijection

Some counting

B-trees

Sets of permutations

Conclusions

1 Take $\pi^{(1)}$ and T, and lift $\pi^{(1)}$ to a sequence $(K_{i_1}, \ldots, K_{i_{n_1}})$ of keys from T.

2 Given $\pi^{(1)}$ and T, produce a historic tree H such that the pruned history fits with $\pi^{(1)}$.

A bijection for *B*-trees

```
Given: T = T_n, and \pi^{(1)}.
Three steps:
```

The bijection

Some counting

B-trees

Sets of permutations

Conclusions

1 Take $\pi^{(1)}$ and T, and lift $\pi^{(1)}$ to a sequence $(K_{i_1}, \ldots, K_{i_{n_1}})$ of keys from T.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q @

2 Given $\pi^{(1)}$ and T, produce a historic tree H such that the pruned history fits with $\pi^{(1)}$.

3 Given T, H, $(K_{i_1}, \ldots, K_{i_{n_1}})$, produce $\pi \in \underline{\pi}(H)$.

A bijection for *B*-trees

```
Given: T = T_n, and \pi^{(1)}.
Three steps:
```

The bijection

Some counting

B-trees

Sets of permutations

Conclusions

1 Take $\pi^{(1)}$ and T, and lift $\pi^{(1)}$ to a sequence $(K_{i_1}, \ldots, K_{i_{n_1}})$ of keys from T.

2 Given $\pi^{(1)}$ and T, produce a historic tree H such that the pruned history fits with $\pi^{(1)}$.

3 Given T, H, $(K_{i_1}, \ldots, K_{i_{n_1}})$, produce $\pi \in \underline{\pi}(H)$.

The algorithm requires choices, different choices lead to different π ; all possibly choices = all permutations that produce T and respect $\pi^{(1)}$.

A bijection for <i>B</i> -trees	
B-trees	
The bijection	
Some counting	
Sets of permutations	
Conclusions	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

A bijection for <i>B</i> -trees				
B-trees				
The bijection				
Some counting	Build a binary search tree from $\pi^{(1)}$:			
Sets of permutations				
Conclusions	24			

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Stretch it into a historic tree, and keep track of the insertion order into the binary search tree:

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○臣 - - - のへで

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Lemma

The digraph $G = G(T, \pi^{(1)})$ constructed in this fashion is acyclic. Any topological labelling of G induces a historic tree Hfor T on the black edges. Such H corresponds bijectively to a history of T that is obtained by all those $\pi \in S_n$ that after pruning, produce $\pi^{(1)}$.

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

Lemma

The digraph $G = G(T, \pi^{(1)})$ constructed in this fashion is acyclic. Any topological labelling of G induces a historic tree Hfor T on the black edges. Such H corresponds bijectively to a history of T that is obtained by all those $\pi \in S_n$ that after pruning, produce $\pi^{(1)}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We will choose the labelling we already know ;-)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ● ●

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー 釣ん(で)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

- Bijection between histories of *B*-trees and family of increasing trees.
- Enables new approaches for counting *B*-trees and for showing limit theorems for tree statistics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

- Bijection between histories of *B*-trees and family of increasing trees.
- Enables new approaches for counting *B*-trees and for showing limit theorems for tree statistics.
- Algorithmic description of set of permutations that produce given *B*-tree or given history.

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

- Bijection between histories of *B*-trees and family of increasing trees.
- Enables new approaches for counting *B*-trees and for showing limit theorems for tree statistics.
- Algorithmic description of set of permutations that produce given *B*-tree or given history.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Many open problems remain!

A bijection for *B*-trees

B-trees

The bijection

Some counting

Sets of permutations

Conclusions

- Bijection between histories of *B*-trees and family of increasing trees.
- Enables new approaches for counting *B*-trees and for showing limit theorems for tree statistics.
- Algorithmic description of set of permutations that produce given *B*-tree or given history.
 - Many open problems remain!

~~~ F.I.N ~~~