Prague Dimension of Random Graphs

Kalen Patton

Joint work with He Guo and Lutz Warnke Georgia Institute of Technology

May 30, 2021

The Prague Dimension $\dim_p(G)$

 $\dim_p(G) :=$ the least k s.t. \exists a k-colorable clique edge-covering of \overline{G} .

- Introduced by Nešetřil, Pultr, and Rödl in the late 1970s.
- Many equivalent definitions. The clique-based one is useful for us.
- For brief, we introduce the *clique color number* $cc'(G) := \dim_p(\overline{G})$.

Main Question

Conjecture (Füredi-Kantor)

With high probability, $\dim_p(G_{n,p}) = \Theta(\frac{n}{\log n})$ for constant $p \in (0,1)$.

• Suffices to show $cc'(G_{n,p}) = \Theta(\frac{n}{\log n})$ whp, as

$$\dim_p(G_{n,p}) \stackrel{d}{=} cc'(G_{n,1-p}).$$

Lower bound is simple:

$$cc'(G_{n,p}) \geq \frac{\Delta(G_{n,p})}{\omega(G_{n,p})-1} = \Theta\left(\frac{n}{\log n}\right).$$

< ロト < 同ト < ヨト < ヨト

Main Question

Conjecture (Füredi-Kantor)

With high probability, $\dim_p(G_{n,p}) = \Theta(\frac{n}{\log n})$ for constant $p \in (0,1)$.

• Suffices to show $cc'(G_{n,p}) = \Theta(\frac{n}{\log n})$ whp, as

$$\dim_p(G_{n,p}) \stackrel{d}{=} cc'(G_{n,1-p}).$$

Lower bound is simple:

$$cc'(G_{n,p}) \geq \frac{\Delta(G_{n,p})}{\omega(G_{n,p})-1} = \Theta\left(\frac{n}{\log n}\right).$$

• **Difficulty:** For upper bound, we need to color/cover $G_{n,p}$ with mostly cliques of size $\Theta(\log n)$.

< ロト < 同ト < ヨト < ヨ

Main Result and Proof Components

Main Theorem (Guo, Patton, Warnke 2020⁺)

With high probability, $cc'(G_{n,p}) = \Theta(\frac{n}{\log n})$ for constant $p \in (0,1)$.

Two Main Challenges for Upper Bound:

() Need a clique covering C of $G_{n,p}$ with most cliques of size $\Theta(\log n)$.

2 Need to color C with $O(n/\log n)$ colors.

Main Result and Proof Components

Main Theorem (Guo, Patton, Warnke 2020⁺)

With high probability, $cc'(G_{n,p}) = \Theta(\frac{n}{\log n})$ for constant $p \in (0,1)$.

Two Main Challenges for Upper Bound:

• Need a clique covering C of $G_{n,p}$ with most cliques of size $\Theta(\log n)$.

- Can use a "nibble" algorithm.
- Gives efficient covering

$$\mathcal{C}=\mathcal{C}_0\cup\mathcal{C}_1\cup\cdots\cup\mathcal{C}_I,$$

where each C_i is uniform.

2 Need to color C with $O(n/\log n)$ colors.

Main Result and Proof Components

Main Theorem (Guo, Patton, Warnke 2020⁺)

With high probability, $cc'(G_{n,p}) = \Theta(\frac{n}{\log n})$ for constant $p \in (0,1)$.

Two Main Challenges for Upper Bound:

• Need a clique covering C of $G_{n,p}$ with most cliques of size $\Theta(\log n)$.

- Can use a "nibble" algorithm.
- Gives efficient covering

$$\mathcal{C}=\mathcal{C}_0\cup\mathcal{C}_1\cup\cdots\cup\mathcal{C}_I,$$

where each C_i is uniform.

2 Need to color C with $O(n/\log n)$ colors.

- We can check that $\sum_i \Delta(C_i) = O(n/\log n)$.
- Want to say $\chi'(\mathcal{C}_i) = O(\Delta(\mathcal{C}_i))$, so we can use

$$\chi'(\mathcal{C}) \leq \sum_i \chi'(\mathcal{C}_i) \leq \sum_i O(\Delta(\mathcal{C}_i)) = O(n/\log n).$$

Part 1: Clique Selection via Semi-Random Algorithm

Clique covering generated as follows.

• G_{i+1} generated by removing a random set C_i of cliques from G_i .

• Take all remaining edges in $C_I = E(G_I)$, and set

$$\mathcal{C}=\mathcal{C}_0\cup\cdots\cup\mathcal{C}_I.$$

Part 2: A Hypergraph Coloring Problem

Proof Strategy

$$\chi'(\mathcal{C}) \leq \sum_{0 \leq i \leq I} \chi'(\mathcal{C}_i) \stackrel{?}{\leq} \sum_{0 \leq i \leq I} O(\Delta(\mathcal{C}_i)) \leq O\left(\frac{n}{\log n}\right).$$

We want $\chi'(C_i) \leq O(\Delta(C_i))$ to complete our proof.

- For i = I: $\chi'(C_I) \leq 2\Delta(C_I)$ by Vizing's Theorem.
- For i < I: We want a Pippenger-Spencer like result.

Theorem (Pippenger-Spencer, 1989)

For constant $k \ge 2$ and $\epsilon > 0$, any hypergraph \mathcal{H} that is k-uniform, is sufficiently regular, and has small codegree, satisfies

 $\chi'(\mathcal{H}) \leq (1+\epsilon)\Delta(\mathcal{H}).$

▲ @ ▶ ▲ @ ▶ ▲

Part 2: A Hypergraph Coloring Problem

Proof Strategy

$$\chi'(\mathcal{C}) \leq \sum_{0 \leq i \leq I} \chi'(\mathcal{C}_i) \stackrel{?}{\leq} \sum_{0 \leq i \leq I} O(\Delta(\mathcal{C}_i)) \leq O\left(\frac{n}{\log n}\right).$$

We want $\chi'(C_i) \leq O(\Delta(C_i))$ to complete our proof.

- For i = I: $\chi'(C_I) \leq 2\Delta(C_I)$ by Vizing's Theorem.
- For *i* < *I*: We want a Pippenger-Spencer like result.

Problem

Pippenger-Spencer only applies to hypergraphs with constant uniformity k.

Part 2: A Hypergraph Coloring Problem

Proof Strategy

$$\chi'(\mathcal{C}) \leq \sum_{0 \leq i \leq I} \chi'(\mathcal{C}_i) \stackrel{?}{\leq} \sum_{0 \leq i \leq I} O(\Delta(\mathcal{C}_i)) \leq O\left(\frac{n}{\log n}\right)$$

We want $\chi'(C_i) \leq O(\Delta(C_i))$ to complete our proof.

- For i = I: $\chi'(C_I) \leq 2\Delta(C_I)$ by Vizing's Theorem.
- For i < I: We want a Pippenger-Spencer like result.

Problem

Pippenger-Spencer only applies to hypergraphs with constant uniformity k.

Solution

Exploit that C_i is a random set of cliques. Can extend to $k = O(\log n)$.

(I) < (II) <

Our Hypergraph Coloring Result

Chromatic Index of Random Subhypergraphs (Guo, Patton, Warnke)

Let ${\mathcal H}$ be a k-uniform hypergraph that satisfies

- Edge uniformity: $2 \le k \le b \log n$,
- Approximately regular: $\deg_{\mathcal{H}}(v) = (1 \pm n^{-\sigma})D$,
- Small codegree: $\deg_{\mathcal{H}}(u, v) \leq n^{-\sigma} D$.

 $\mathcal{H}_m :=$ random subhypergraph of \mathcal{H} containing $n^{1+\sigma} \leq m \ll e(\mathcal{H})$ edges. Then whp,

$$\chi'(\mathcal{H}_m) \leq (1+\delta)\Delta(\mathcal{H}_m) \quad \text{for } \delta \approx b/\sigma.$$

Key Point: Can allow for edges of size $O(\log n)$.

Corollary

$$\chi'(\mathcal{H}_m) \leq egin{cases} (1+\epsilon)\Delta(\mathcal{H}_m) & ext{if } k = o(\log n). \ O(\Delta(\mathcal{H}_m)) & ext{if } k = O(\log n). & \longleftarrow (ext{What we use.}) \end{cases}$$

Our Hypergraph Coloring Result

Chromatic Index of Random Subhypergraphs (Guo, Patton, Warnke)

Let ${\mathcal H}$ be a k-uniform hypergraph that satisfies

- Edge uniformity: $2 \le k \le b \log n$,
- Approximately regular: $\deg_{\mathcal{H}}(v) = (1 \pm n^{-\sigma})D$,
- Small codegree: $\deg_{\mathcal{H}}(u, v) \leq n^{-\sigma} D$.

 $\mathcal{H}_m :=$ random subhypergraph of \mathcal{H} containing $n^{1+\sigma} \leq m \ll e(\mathcal{H})$ edges. Then whp,

$$\chi'(\mathcal{H}_m) \leq (1+\delta)\Delta(\mathcal{H}_m) \qquad \text{for } \delta \approx b/\sigma.$$

Algorithmic proof

• Natural random greedy alg. colors $E(\mathcal{H}_m)$ using $\lfloor (1+\delta)\frac{km}{n} \rfloor$ colors

$$\Delta(\mathcal{H}_m) \approx \Delta(\mathcal{H}) \frac{m}{e(\mathcal{H})} \approx D \frac{m}{nD/k} = \frac{km}{n}$$

• Analysis based on differential equation method

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, ..., q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

• For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **②** Color e by a available color in Q uniformly at random

Let
$$Q := \{R, B, G, Y\}$$

Kalen Patton (GT)

May 30, 2021 8/9

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

• For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **②** Color e by a available color in Q uniformly at random

Available colors for the selected edge: $\{R, B, G, Y\}$

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- ② Color e by a available color in Q uniformly at random

Color the selected edge by R

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, ..., q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

• For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **\bigcirc** Color *e* by a available color in *Q* uniformly at random

Available colors for the selected edge: $\{R, B, G, Y\}$

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- ② Color e by a available color in Q uniformly at random

Color the selected edge by G

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **Q** Color e by a available color in Q uniformly at random

Available colors for the selected edge: $\{B, Y\}$

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- ② Color e by a available color in Q uniformly at random

Color the selected edge by B

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, ..., q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

• For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **②** Color e by a available color in Q uniformly at random

Available colors for the selected edge: $\{R, G, Y\}$

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **2** Color e by a available color in Q uniformly at random

Color the selected edge by R

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, ..., q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

• For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- **Q** Color e by a available color in Q uniformly at random

Available colors for the selected edge: $\{Y\}$

Random greedy hypergraph coloring algorithm

• Let
$$Q := \{1, \ldots, q\}$$
 be the set of possible colors for $q = \lfloor (1 + \delta) \frac{km}{n} \rfloor$

2 For step
$$1 \le i \le m$$
:

- Sample an edge $e \in E(\mathcal{H})$ uniformly at random
- ② Color e by a available color in Q uniformly at random

Color the selected edge by Y

Summary

Chromatic Index of Random Subhypergraphs (Guo, Patton, Warnke)

Let \mathcal{H} be a k-uniform hypergraph that satisfies

- Edge uniformity: $2 \le k \le b \log n$,
- Approximately regular: $\deg_{\mathcal{H}}(v) = (1 \pm n^{-\sigma})D$,
- Small codegree: $\deg_{\mathcal{H}}(u, v) \leq n^{-\sigma} D$.

 $\mathcal{H}_m :=$ random subhypergraph of \mathcal{H} containing $n^{1+\sigma} \leq m \ll e(\mathcal{H})$ edges. Then whp, $\chi'(\mathcal{H}_m) \leq (1+\delta)\Delta(\mathcal{H}_m)$ for $\delta \approx b/\sigma$.

- Extends Pippenger-Spencer theorem for random subhypergraphs.
- Verifies conjecture of Füredi-Kantor that $\dim_p(G_{n,p}) = \Theta(\frac{n}{\log n})$ whp.

Open Problems

- Does the same hold for general hypergraphs?
- Can the $k = O(\log n)$ be relaxed for random hypergraphs?