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Graph Parameters of Interest

The Prague Dimension dimp(G )

dimp(G ) := the least k s.t. ∃ a k-colorable clique edge-covering of G .

Introduced by Nes̆et̆ril, Pultr, and Rödl in the late 1970s.

Many equivalent definitions. The clique-based one is useful for us.

For brief, we introduce the clique color number cc ′(G ) := dimp(G ).
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Main Question

Conjecture (Füredi-Kantor)

With high probability, dimp(Gn,p) = Θ
(

n
log n

)
for constant p ∈ (0, 1).

Suffices to show cc ′(Gn,p) = Θ
(

n
log n

)
whp, as

dimp(Gn,p)
d
= cc ′(Gn,1−p).

Lower bound is simple:

cc ′(Gn,p) ≥ ∆(Gn,p)

ω(Gn,p)− 1
= Θ

(
n

log n

)
.

Difficulty: For upper bound, we need to color/cover Gn,p with mostly
cliques of size Θ(log n).
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Main Result and Proof Components

Main Theorem (Guo, Patton, Warnke 2020+)

With high probability, cc ′(Gn,p) = Θ
(

n
log n

)
for constant p ∈ (0, 1).

Two Main Challenges for Upper Bound:
1 Need a clique covering C of Gn,p with most cliques of size Θ(log n).

Can use a “nibble” algorithm.
Gives efficient covering

C = C0 ∪ C1 ∪ · · · ∪ CI ,

where each Ci is uniform.

2 Need to color C with O(n/ log n) colors.

We can check that
∑

i ∆(Ci ) = O(n/ log n).
Want to say χ′(Ci ) = O(∆(Ci )), so we can use

χ′(C) ≤
∑
i

χ′(Ci ) ≤
∑
i

O(∆(Ci )) = O(n/ log n).
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Part 1: Clique Selection via Semi-Random Algorithm

Clique covering generated as follows.

· · ·

C

C0 C1 . . . CI = E (GI )

Gn,p = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ GI

Gi+1 generated by removing a random set Ci of cliques from Gi .

Take all remaining edges in CI = E (GI ), and set

C = C0 ∪ · · · ∪ CI .
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Part 2: A Hypergraph Coloring Problem

Proof Strategy

χ′(C) ≤
∑
0≤i≤I

χ′(Ci )
?
≤
∑
0≤i≤I

O(∆(Ci )) ≤ O

(
n

log n

)
.

We want χ′(Ci ) ≤ O(∆(Ci )) to complete our proof.

For i = I : χ′(CI ) ≤ 2∆(CI ) by Vizing’s Theorem.

For i < I : We want a Pippenger-Spencer like result.

Theorem (Pippenger-Spencer, 1989)

For constant k ≥ 2 and ε > 0, any hypergraph H that is k-uniform, is
sufficiently regular, and has small codegree, satisfies

χ′(H) ≤ (1 + ε)∆(H).
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For i = I : χ′(CI ) ≤ 2∆(CI ) by Vizing’s Theorem.

For i < I : We want a Pippenger-Spencer like result.

Problem

Pippenger-Spencer only applies to hypergraphs with constant uniformity k.

Solution

Exploit that Ci is a random set of cliques. Can extend to k = O(log n).
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Our Hypergraph Coloring Result

Chromatic Index of Random Subhypergraphs (Guo, Patton, Warnke)

Let H be a k-uniform hypergraph that satisfies

Edge uniformity: 2 ≤ k ≤ b log n,

Approximately regular: degH(v) = (1± n−σ)D,

Small codegree: degH(u, v) ≤ n−σD.

Hm := random subhypergraph of H containing n1+σ ≤ m� e(H) edges.
Then whp,

χ′(Hm) ≤ (1 + δ)∆(Hm) for δ ≈ b/σ.

Key Point: Can allow for edges of size O(log n).

Corollary

χ′(Hm) ≤

{
(1 + ε)∆(Hm) if k = o(log n).

O(∆(Hm)) if k = O(log n). ←− (What we use.)
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Hm := random subhypergraph of H containing n1+σ ≤ m� e(H) edges.
Then whp,

χ′(Hm) ≤ (1 + δ)∆(Hm) for δ ≈ b/σ.

Algorithmic proof

Natural random greedy alg. colors E (Hm) using b(1 + δ)kmn c colors

∆(Hm) ≈ ∆(H)
m

e(H)
≈ D

m

nD/k
=

km

n

Analysis based on differential equation method
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Hypergraph Coloring Algorithm Example

Random greedy hypergraph coloring algorithm

1 Let Q := {1, . . . , q} be the set of possible colors for q = b(1 + δ)kmn c
2 For step 1 ≤ i ≤ m:

1 Sample an edge e ∈ E (H) uniformly at random
2 Color e by a available color in Q uniformly at random

Let Q := {R,B,G ,Y }
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Summary

Chromatic Index of Random Subhypergraphs (Guo, Patton, Warnke)

Let H be a k-uniform hypergraph that satisfies

Edge uniformity: 2 ≤ k ≤ b log n,

Approximately regular: degH(v) = (1± n−σ)D,

Small codegree: degH(u, v) ≤ n−σD.

Hm := random subhypergraph of H containing n1+σ ≤ m� e(H) edges.
Then whp, χ′(Hm) ≤ (1 + δ)∆(Hm) for δ ≈ b/σ.

Extends Pippenger-Spencer theorem for random subhypergraphs.

Verifies conjecture of Füredi-Kantor that dimp(Gn,p) = Θ
(

n
log n

)
whp.

Open Problems

Does the same hold for general hypergraphs?

Can the k = O(log n) be relaxed for random hypergraphs?
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