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Two years have past; two summers, with the length / Of two long winters!

me at AofA 2019!

I was giving a talk with title

The challenge of linear-

time Boltzmann sampling

Some results, some hopes. . .

Here, I'll tell you about one

hope that has been ful�lled:

Boltzmann sampling

of irreducible context-free

structures in linear time

video: https://library.cirm-math.fr/Record.htm?idlist=2&record=19286312124910045949

slides: https://www.cirm-math.fr/RepOrga/1940/Slides/Sportiello.pdf

Andrea Sportiello Boltzmann sampling in linear time: context-free structures



Irreducible context-free structures

A context-free structure is a class Y =
⋃

n Yn of con�gurations

whose combinatorial speci�cation leads to a system of m equations

the gen. function Y (1)(z) =
∑

n z
n|Yn| being the �rst component

~Y (z) = ~Φ(z , ~Y (z)) .

If the system is irreducible in a certain sense,

the Drmota�Lalley�Woods Theorem applies, and |Yn| ∼ Kρ−nn−
3

2 .

Also, Perron�Frobenius Theory applies to the matrix

K = {Kαβ}1≤α,β≤m = ∂
∂Y (β) Φ(α)(z , ~Y )

The simplest situation is m = 1 and Φ(z , y) = z φ(y).
This corresponds to simply-generated (rooted planar) trees,

where each node counts as an unit,

and of �ukasiewicz excursions, that is lattice paths in the

upper-half plane with steps of the form (+1, h) for h ≥ −1
(the famous bijection is based on the depth-�rst search countour of the tree)
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An example: subdiving a square into squares and triangles
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Boltzmann sampling for combinatorial structures

Given a family of measures µn(X ) on Yn, exact sampling is the

problem of devising an e�cient algorithm for sampling

con�gurations X ∈ Yn, with measure µn.

In the Boltzmann sampling paradigm, the combinatorial

speci�cation is turned into an algorithm for sampling from the

`Boltzmann' measure µ[z](X ) = z |X |µn(X )/Y (z)

Boltzmann method

and you are temped to use the obvious algorithm

repeat

X ← µ[z]

until |X | = n;
return X

z-w Duchon, Flajolet, Louchard and Schae�er,

Boltzmann Samplers for the Random Generation of Combinatorial Structures
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Boltzmann sampling for bridges

Some structures can be put in bijection with lattice bridges,

that is directed walks in Z2, from (0, 0) to Pn = (n, 0) (or to (n,−1))

Now X = (x1, . . . , xk), and µn(X ) =
(∏

j p(xj)
)
1(
∑

j xj = Pn)

In this case, the Boltzmann idea is to change p(x) into

p[z](x) ∝ zx2p(x), with z tuned as to have average zero drift

Boltzmann method
for bridges

and you are temped to use the obvious algorithm

repeat

p = (0, 0);
repeat

xj ← p[z];
p = p + xj ;

until p1 ≥ n;

until p = Pn;

return (x1, x2, . . .)
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Complexity of the Boltzmann Method

The typical complexity of the Boltzmann Method,

for structures in the smooth inverse-function schema, is T (n) ∼ n2

If we are in the Bridge case, the analysis is simpler

and the complexity is smaller, T (n) ∼ n
3

2

Indeed, a single run takes time ∼ n,
but the probability of reaching Pn is only ∼ 1/

√
n.

(example with p[z](x1, x2) = 2−x1−x21(x1 ≥ 1, x2 ≥ −1))

7

We want a new idea for `accelerating' the Boltzmann Method, and

reach linear complexity
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BBHL algorithm: `the mother of all linear algorithms'

Can we really reach linearity in sampling bridges?

Yes! The BBHL's BalancedShuffle does it in a simple case

z-w Bacher, Bodini, Hollender and Lumbroso,

MergeShu�e: A Very Fast, Parallel Random Permutation Algorithm

The problem: exact sampling of strings in {•, ◦}n with #{•} = k
BBHL solves it in linear time and optimal random-bit complexity
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BBHL algorithm: `the mother of all linear algorithms'

First naïve idea: the Boltzmann Method in the bridge case.

Sample n variables x = (x1, . . . , xn) ∈ {0, 1}n, i.i.d. with Bernp,

(with p = k/n). Restart if |x | 6= k .

Average complexity: ∼ n
3

2 ,

because |x | is distributed roughly as a Gaussian

of variance θ(n) and mean k .
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BBHL algorithm: `the mother of all linear algorithms'

Second naïve idea: project down from Fisher�Yates

The Fisher�Yates algorithm samples a random permutation σ ∈ Sn

with optimal random-bit complexity: Trand(n) ' ln n! ' n(ln n − 1)
It works by sampling y ∈ {1}× {1, 2}×{1, 2, 3}× · · · × {1, . . . , n},
and doing as follows:

Then, `projecting down' means

xi = 1 i� σ−1(i) ≤ k

Average complexity: ∼ n ln n,
because, even if Fisher�Yates is

optimal, the projection throws

away most of the information
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BBHL algorithm: `the mother of all linear algorithms'

The good idea: Sample the n variables x = (x1, . . . , xn) ∈ {0, 1}n,
i.i.d. with Bernp, one by one up to when you have k entries xi = 1,

or n − k entries xi = 0.

Then complete deterministically with what is needed,

Finally, perform Fisher�Yates shu�ings

on these last added steps.

Average complexity:

Trand(n) = S [µ] +O(
√
n ln n)

because the �nal shu�es

are a.s. just Θ(
√
n)
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Devroye Algorithm for simply-generated trees

In the case of simply-generated trees

(that can be related to bridges to Pn = (n,−1), with steps (+1, h))
an algorithm of Devroye, once complemented by BBHL, is optimal

z-w Devroye, Simulating Size-constrained Galton-Watson Trees

idea: First sample how many steps of each type you have in total,

according to a multinomial distribution, then put them in some

canonical order, �nally perform iteratively random BBHL shu�es

Pros:

4 optimal random-bit complexity

Cons:

7 use of �oat approximations for multinomial coe�cients,

7 need for extra tricks if the steps do not have �nite support

7 cannot be used for higher-dimensional systems, as the steps

are not exchangeable random variables
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The idea of our algorithm: a bridge example

How our algorithm works, in the example of bridge before:

I sample steps in p 6=(x) ∝ p[z](x)1(x 6= (1,−1)),† up to reach

the `landing diagonal' Dn, at position (n −m,m) (if you jump

over, restart);
I introduce the acceptance rate rn(m) (if failed, restart);
I complete the path to (n − 1) with m steps (1,−1);
I perform a BBHL shu�e of the steps, with parameters (n,m).

† In fact, a small deformation of it, namely a combination of a

slightly sub-critical and super-critical measures.
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Context-free structures are coloured random trees

The combinatorial speci�cation associated to a system
~Y (z) = ~Φ(z , ~Y (z)) translates into a Galton�Watson process,

which, in turns, can be seen as a random rewriting system

Example: for

{
A = A z + B2 + z
B = A3 + z2

we could get

A stack size: 1 obj. size: 0

A
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Context-free structures are coloured random trees

The combinatorial speci�cation associated to a system
~Y (z) = ~Φ(z , ~Y (z)) translates into a Galton�Watson process,
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Example: for

{
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Context-free structures are coloured random trees
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Context-free structures are coloured random trees

The combinatorial speci�cation associated to a system
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Context-free structures are coloured random trees

The combinatorial speci�cation associated to a system
~Y (z) = ~Φ(z , ~Y (z)) translates into a Galton�Watson process,

which, in turns, can be seen as a random rewriting system

Example: for

{
A = A z + B2 + z
B = A3 + z2

we could get

zzzzzzzzz stack size: 0 obj. size: 9

A

A

B B

A A A

B B
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From trees to bridges

In the limit, the stack size pro�le is an excursion

while the object size pro�le is a straight line

The Cyclic Lemma allows to relate the exact sampling

of excursions and of bridges

However, for a generic speci�cation

we have coloured nodes, and the size

is the number of leaves, not of nodes.

As a result, the bridges have a variable

number of steps, and non-local correlations

Neither Devroye nor BBHL (nor anything else)

apply as is, and we need some new idea. . .
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The trees in our example
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The trees in our example

S z
T

T T

T
S

T

T

T

T

T z S

T

TT

The size is the number of leaves: 3 (squares) + 44 (triangles)
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The bridges in our example

Break the tree into subtrees at all Y (1)-nodes
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The bridges in our example

Break the tree into subtrees at all Y (1)-nodes
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Our bridges in general

(10, 3)
(4, 0)

(2,−1)

(6, 1) (6, 1)
(2,−1)

(2,−1)

(2,−1)(4, 0)(6, 1)

(1,−1) (1,−1) (1,−1)

Breaking the bridges in this way leads to exchangeable steps x ,
where x1 is the number of z-leaves in the subtree,

and x2 + 1 is the number of Y (1)-leaves.

So, we just have to run our algorithm for bridges
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