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Two years have past, two summers, with the length / Of two long winters!

me at AofA 2019!
THEMATICS LIBRARY ‘ | was giving a talk with title
" The challenge of linear-
time Boltzmann sampling

CAM

Some results, some hopes. ..

Here, I'll tell you about one
hope that has been fulfilled:
Boltzmann sampling

of irreducible context-free
structures in linear time

video: https://library.cirm-math.fr/Record.htm?idlist=2&record=19286312124910045949
slides: https://www.cirm-math.fr/RepOrga/1940/Slides/Sportiello.pdf
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Irreducible context-free structures

A context-free structure is a class ) = |J,, Y of configurations
whose combinatorial specification leads to a system of m equations
the gen. function Y(1)(z) =37 z"|),| being the first component

Y(z) = ®(z, Y(2)).

If the system is irreducible in a certain sense,
. 3
the Drmota-Lalley-Woods Theorem applies, and |V,| ~ Kp~™"n" 2.
Also, Perron—Frobenius Theory applies to the matrix
5 =
K= {Kaﬂ}lga,ﬂgm = 3vy® ¢(a)(2’ Y)

The simplest situation is m =1 and ®(z,y) = z ¢(y).
This corresponds to simply-generated (rooted planar) trees,
where each node counts as an unit,
and of tukasiewicz excursions, that is lattice paths in the
upper-half plane with steps of the form (+1, h) for h > —1
(the famous bijection is based on the depth-first search countour of the tree)
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Boltzmann sampling for combinatorial structures

Given a family of measures p,(X) on V,, exact sampling is the
problem of devising an efficient algorithm for sampling
configurations X € Y,,, with measure .

In the Boltzmann sampling paradigm, the combinatorial
specification is turned into an algorithm for sampling from the
‘Boltzmann’ measure yu(,)(X) = ZXun(X)/ Y (2)
and you are temped to use the obvious algorithm

repeat

X < 2
‘ . M Boltzmann method
until |[X| = n;

return X

14D Duchon, Flajolet, Louchard and Schaeffer,
Boltzmann Samplers for the Random Generation of Combinatorial Structures
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Boltzmann sampling for bridges

Some structures can be put in bijection with lattice bridges,
that is directed walks in Z2, from (0,0) to P, = (n,0) (or to (n, —1))
Now X = (x1,- %), and ua(X) = (TT; P(x)) (5, % = Pa)
In this case, the Boltzmann idea is to change p(x) into

Piz)(x) &< 22 p(x), with z tuned as to have average zero drift
and you are temped to use the obvious algorithm

repeat
fe;ego{ o Boltzmann method
X < Pla; for bridges
p=p+X
until p; > n;
until p = Pp;

return (x1, x2,...)
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Complexity of the Boltzmann Method

The typical complexity of the Boltzmann Method,
for structures in the smooth inverse-function schema, is T(n) ~ n?

If we are in the Bridge case, the analysis is simpler
and the complexity is smaller, T(n) ~ n3
Indeed, a single run takes time ~ n,
but the probability of reaching P, is only ~ 1/y/n.

(example with pp(xi,x2) = 27721 (x; > 1,x > —1))
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Complexity of the Boltzmann Method

The typical complexity of the Boltzmann Method,

for structures in the smooth inverse-function schema, is T(n) ~ n?

If we are in the Bridge case, the analysis is simpler
and the complexity is smaller, T(n) ~ n3
Indeed, a single run takes time ~ n,
but the probability of reaching P, is only ~ 1/y/n.

(example with pp(xi,x2) = 27721 (x; > 1,x > —1))

We want a new idea for ‘accelerating’ the Boltzmann Method, and
reach linear complexity
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BBHL algorithm: ‘the mother of all linear algorithms’

Can we really reach linearity in sampling bridges?
Yes! The BBHL's BALANCEDSHUFFLE does it in a simple case

14D Bacher, Bodini, Hollender and Lumbroso,
MergeShuffle: A Very Fast, Parallel Random Permutation Algorithm

The problem: exact sampling of strings in {e,0}" with #{e} = k
BBHL solves it in linear time and optimal random-bit complexity
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BBHL algorithm: ‘the mother of all linear algorithms’

First naive idea: the Boltzmann Method in the bridge case.
Sample n variables x = (x1,...,x,) € {0,1}", i.i.d. with Bern,,
(with p = k/n). Restart if |x| # k.

Average complexity: ~ n%,
because |x| is distributed roughly as a Gaussian
of variance 6(n) and mean k.
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BBHL algorithm: ‘the mother of all linear algorithms’

Second naive idea: project down from Fisher—Yates
The Fisher—Yates algorithm samples a random permutation 0 € G,
with optimal random-bit complexity: T.anq(n) ~ Inn! >~ n(lnn—1)
It works by sampling y € {1} x {1,2} x{1,2,3} x---x {1,...,n},
and doing as follows:
12345678910

AN WN ===

=2

37518109246
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BBHL algorithm: ‘the mother of all linear algorithms’

Second naive idea: project down from Fisher—Yates
The Fisher—Yates algorithm samples a random permutation 0 € G,
with optimal random-bit complexity: T.anq(n) ~ Inn! >~ n(lnn—1)
It works by sampling y € {1} x {1,2} x{1,2,3} x---x {1,...,n},

and doing as follows: 0000000000
12345678910

Then, ‘projecting down’ means 1
x; = 1iff o71(i) < k }
Average complexity: ~ nlnn, %
because, even if Fisher—Yates is 6
optimal, the projection throws 2 =

. . 5
away most of the information 7
6

37518109246

[ JOXOX NoJoXoX X XO)
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BBHL algorithm: ‘the mother of all linear algorithms’

The good idea: Sample the n variables x = (x,...,x,) € {0,1}",
i.i.d. with Bernp, one by one up to when you have k entries x; = 1,
or n — k entries x; = 0.
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BBHL algorithm: ‘the mother of all linear algorithms’

The good idea: Sample the n variables x = (x,...,x,) € {0,1}",
i.i.d. with Bernp, one by one up to when you have k entries x; = 1,
or n — k entries x; = 0.

Then complete deterministically with what is needed,
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BBHL algorithm: ‘the mother of all linear algorithms’

The good idea: Sample the n variables x = (x,...,x,) € {0,1}",
i.i.d. with Bernp, one by one up to when you have k entries x; = 1,
or n — k entries x; = 0.

Then complete deterministically with what is needed,

Finally, perform Fisher—Yates shufflings
on these last added steps.

Average complexity:

Trand(n) = S[M] + O(ﬁln n)
because the final shuffles

are a.s. just ©(y/n)
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Devroye Algorithm for simply-generated trees

In the case of simply-generated trees
(that can be related to bridges to P, = (n, —1), with steps (+1, h))
an algorithm of Devroye, once complemented by BBHL, is optimal
04D Devroye, Simulating Size-constrained Galton-Watson Trees

idea: First sample how many steps of each type you have in total,
according to a multinomial distribution, then put them in some
canonical order, finally perform iteratively random BBHL shuffles

Pros:
v optimal random-bit complexity
Cons:
X use of float approximations for multinomial coefficients,
X need for extra tricks if the steps do not have finite support
X cannot be used for higher-dimensional systems, as the steps
are not exchangeable random variables
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The idea of our algorithm: a bridge example

How our algorithm works, in the example of bridge before:

» sample steps in px(x) oc pp(x)L(x # (1, —1)),! up to reach
the ‘landing diagonal” D,, at position (n — m, m) (if you jump
over, restart);

» introduce the acceptance rate r,(m) (if failed, restart);

» complete the path to (n — 1) with m steps (1, —1);

» perform a BBHL shuffle of the steps, with parameters (n, m).

—+

In fact, a small deformation of it, namely a combination of a
slightly sub-critical and super-critical measures.
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The idea of our algorithm: a bridge example

How our algorithm works, in the example of bridge before:

» sample steps in px(x) oc pp(x)L(x # (1, —1)),! up to reach
the ‘landing diagonal” D,, at position (n — m, m) (if you jump
over, restart);

» introduce the acceptance rate r,(m) (if failed, restart);

» complete the path to (n — 1) with m steps (1, —1);

» perform a BBHL shuffle of the steps, with parameters (n, m).

Dn

Wt

T In fact, a small deformation of it, namely a combination of a
slightly sub-critical and super-critical measures.

Andrea Sportiello Boltzmann sampling in linear time: context-free structures



Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

A stack size: 1 obj. size: 0

®
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BBz stack size: 2 obj. size: 1
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BAAAz stack size: 4 obj. size: 1
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BAAAz stack size: 4 obj. size: 1
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BAzAz stack size: 3 obj. size: 2
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BBBzAz stack size: 4 obj. size: 2
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BBBzAz stack size: 4 obj. size: 2
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BzzBzAz stack size: 3 obj. size: 4
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BzzBzAz stack size: 3 obj. size: 4
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

BzzBzzz stack size: 2 obj. size: 5
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

zzzzBzzz stack size: 1 obj. size: 7
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

zzzzBzzz stack size: 1 obj. size: 7
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Context-free structures are coloured random trees

The combinatorial specification associated to a system
Y(z) = ®(z, Y(z)) translates into a Galton—-Watson process,
which, in turns, can be seen as a random rewriting system

_ 2
Example: for { A=Az+B +z

B — A% 4 2 we could get

227277277 stack size: 0 obj. size: 9
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From trees to bridges

In the limit, the stack size profile is an excursion
while the object size profile is a straight line

The Cyclic Lemma allows to relate the exact sampling
of excursions and of bridges

However, for a generic specification
/\ we have coloured nodes, and the size
is the number of leaves, not of nodes.

As a result, the bridges have a variable
number of steps, and non-local correlations

Neither Devroye nor BBHL (nor anything else)
apply as is, and we need some new idea. ..
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The trees in our example
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The trees in our example
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The size is the number of leaves: 3 (squares) + 44 (triangles)
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The bridges in our example

Break the tree into subtrees at all Y(1)-nodes
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The bridges in our example

Break the tree into subtrees at all Y(1)-nodes
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Our bridges in general

Breaking the bridges in this way leads to exchangeable steps x,
where x; is the number of z-leaves in the subtree,
and x + 1 is the number of Y(1)_leaves.
So, we just have to run our algorithm for bridges

L%y { Y
(ﬁ: *,0) ﬁ
Ty T e
'@ ﬁ {}(2,—1)

)

(6,1) (4,0) (2,-1

(1,-1) (1,-1) (1,-1)
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