Irregular $\mathbf{d_n}$ -process is distinguishable from uniform random $\mathbf{d_n}$ -graph

Erlang Surya

Georgia Institute of Technology

Joint work with Mike Molloy and Lutz Warnke

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Context and Overview

Model: Random *d*-process G_d^P

- Start with an empty graph on *n* vertices
- In each step: add one random edge so that max-degree stays $\leq d$
- Natural random greedy algorithm to generate *d*-regular graph

Main Question: Wormald (1999)

How similar are *d*-process G_d^P and uniform random *d*-regular graph G_d ?

- Wormald conjectured they are similar
- Unclear how to approach

This Talk: Variant for degree sequences **d**_n

Process $G_{d_n}^P$ not similar to uniform G_{d_n} for irregular d_n

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example: Process with degree sequence $d_5 = (2, 2, 2, 3, 3)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Main Result: d_n -process and uniform model differ

 $\mathbf{d_n}$ not almost regular : no degree appears $\geq 0.99n$ times in $\mathbf{d_n}$

Molloy, S., Warnke (2021+)

If the bounded degree sequence \mathbf{d}_n is not almost regular, then can whp distinguish \mathbf{d}_n -process $G_{\mathbf{d}_n}^P$ and uniform random \mathbf{d}_n -graph $G_{\mathbf{d}_n}$

Today: Assume # degree 1 vertex \in [0.01*n*, 0.99*n*]

- Proof Idea: Show discrepancy in edge statistic
 - Number of 1-1 edges whp differ
- Proof Technique: Switching applied to d_n-process G^P_{d_n}
 - Usually only applied to uniform models (not stochastic processes)

Main Technical Result: Discrepancy in Edge Statistic

 $X_{1,1}(G) = \#$ of edges with endpoints of degree 1 in G

Can distinguish both models via $X_{1,1}$ There exists μ and $\epsilon = \epsilon(\Delta) > 0$ such that with high probability $X_{1,1}(G_{d_n}) \in [(1-\epsilon)\mu, (1+\epsilon)\mu]$ and $X_{1,1}(G_{d_n}^P) \notin [(1-\epsilon)\mu, (1+\epsilon)\mu]$

$$X_{1,1}(G_{d_n}^{\mu}) \quad X_{1,1}(G_{d_n}) \quad X_{1,1}(G_{d_n}^{\mu})$$

$$\xrightarrow{ \qquad \qquad } 0 \qquad (1-\epsilon)\mu \quad (1+\epsilon)\mu$$

• Concentration of X_{1,1}(G_{d_n}): standard via configuration model

• Understand $X_{1,1}(G^P_{d_n})$: switching $(\longrightarrow \text{Rest of the talk})$

Switching: Change # of 1-1 edges by exactly one

Definition via Example:

- **Goal**: compare $\mathbb{P}(G_{\mathbf{d}_n}^P = G^+)$ and $\mathbb{P}(G_{\mathbf{d}_n}^P = G^-)$
- Standard switching for uniform models:
 - ▶ Compare size of different graph-classes based on # of 1-1 edges
- Problem for stochastic processes:
 - Order of edges matters (as no longer uniform)
- Solution: Expand based on order σ of edges of G

$$\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{\mathsf{P}} = G) = \sum_{\sigma} \mathbb{P}(\mathsf{d}_{\mathsf{n}}\text{-}\mathrm{process returns } \sigma)$$

How Switching Affect d_n -process Probabilities

Proof Idea: understand how switching affects $\mathbb{P}(\mathbf{d_n}$ -process returns $\sigma)$

$$\mathbb{P}(G_{\mathbf{d}_{\mathbf{n}}}^{P} = G) = \sum_{\sigma} \mathbb{P}(\mathbf{d}_{\mathbf{n}} \text{-} \text{process returns } \sigma)$$

- ロ ト - 4 回 ト - 4 □ - 4

Surprisingly tractable: tractable by expanding out probabilities

Switching: Graph Count Based on $X_{1,1}$

Notation: $G \in \mathbf{d_n}$ if G has degree sequence $\mathbf{d_n}$

Auxiliary Graph: by adding edge between G^+ , G^- :

Key Point: Auxiliary graph is roughly regular when $\ell\approx\mu$ Switching lemma then implies:

$$\frac{\mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell+1})}{\mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell})} \geq 1 + \epsilon'$$

Proof of Main Theorem (Sketch) Definition: $\mathcal{N}_z = \{ G \in \mathbf{d}_n : |X_{1,1}(G) - \mu| \le z \}.$

$$\begin{array}{l} \text{Key Point implies (for } z \leq 2\epsilon\mu) \\ \\ \frac{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z}]}{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z+1}]} \leq \frac{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell})}{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell+1})} \leq \frac{1}{1+\epsilon'} \end{array}$$

$$\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu}] \leq \frac{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu}]}{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{2\epsilon\mu}]} = \prod_{z=\epsilon\mu}^{2\epsilon\mu-1} \frac{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z}]}{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z+1}]} \leq \frac{1}{(1+\epsilon')^{\epsilon\mu}} \to 0$$

Conclusion: whp have

General case: More complicated

Analogous Switching Lemma (for probabilities) fails

$$\frac{\mathbb{P}(\textit{G}_{\textsf{d}_{\textsf{n}}}^{\textit{P}} = \textit{G}^+)}{\mathbb{P}(\textit{G}_{\textsf{d}_{\textsf{n}}}^{\textit{P}} = \textit{G}^-)} \geq 1 + \epsilon'$$

Counterexample with minimum degree $\delta = 2$:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

\mathbf{d}_{n} -process and uniform model $G_{\mathbf{d}_{n}}$ differ

If the bounded degree sequence d_n is not almost regular, then can whp distinguish d_n -process $G_{d_n}^P$ and random d_n -graph G_{d_n}

- Wormald's conjecture does not extend to irregular case
- Proof technique: use switching for stochastic process

Questions

- Other applications of switching to stochastic process?
- Wormald's conjecture for *d*-regular random graph process?