The Sunflower Problem

Tolson Bell
Georgia Tech
(→ Carnegie Mellon)

Suchakree Chueluecha
Lehigh University
(→ University of Virginia)

Lutz Warnke
Georgia Tech

June 2021

Let \mathcal{F} be a k-uniform family of subsets of X, i.e., $|S| = k$ and $S \subseteq X$ for all $S \in \mathcal{F}$.

\mathcal{F} is a sunflower with p petals if $|\mathcal{F}| = p$ and there exists $Y \subseteq X$ with $Y = S_i \cap S_j$ for all distinct $S_i, S_j \in \mathcal{F}$.

Y is the core and $S_i \setminus Y$ are the petals.

Note that p disjoint sets forms a sunflower with p petals and empty core.

Applications

Sunflowers have many uses in algorithmic analysis:

- Fast algorithms for matrix multiplication
- Cryptography
- Pseudorandomness
- Lower bounds on circuitry
- Data structure efficiency
- Random approximations
Basic Results

Research Question

What is the smallest $r = r(p, k)$ such that every k-uniform family with at least r^k sets must contain a sunflower with p petals?

Erdős–Rado (1960)

(a) $r = pk$ is **sufficient** to guarantee a sunflower:
 every family with more than $(pk)^k > k!(p - 1)^k$ sets contains a sunflower

(b) $r > p - 1$ is **necessary** to guarantee a sunflower:
 there is a family of $(p - 1)^k$ sets without a sunflower

- Erdős conjectured $r = r(p)$ is sufficient (no k dependency), offered $1000 reward
- Until 2018, best known upper bound on r was still $k^{1-o(1)}$ with respect to k

“[The sunflower problem] has fascinated me greatly – I really do not see why this question is so difficult.”

–Paul Erdős (1981)
Recent Exciting Developments

- Erdős conjectured $r = r(p)$ is sufficient (no k dependency)
- Until 2018, best known upper bound on r was still $k^{1-o(1)}$ with respect to k

Alweiss–Lovett–Wu–Zhang (Breakthrough Aug 2019)

$r = p^3(\log k)^{1+o(1)}$ is sufficient to guarantee a sunflower

New papers built off their breakthrough ideas:
- Sep 2019: Rao used Shannon’s coding theorem for a cleaner proof and slightly better bound
- Oct 2019: Frankston–Kahn–Narayanan–Park improved a key lemma of ALWZ, enabling them to prove a conjecture of Talagrand regarding thresholds functions
- Jan 2020: Rao improved to $r = O(p \log(pk))$ by incorporating ideas from FKNP
- July 2020: Tao matched Rao’s bound with shorter proof using Shannon entropy
Our Results (2020)

Rao (Jan 2020)

\[r = O(p \log(pk)) \] is sufficient to guarantee a sunflower

Bell–Chueluecha–Warnke (September 2020)

\[r = O(p \log k) \] is sufficient to guarantee a sunflower

Further results:

- *Rao/Tao methods not needed for this result:*
 2019 Frankston–Kahn–Narayanan–Park result suffices with our proof variant

- *Main Technical Lemma is asymptotically sharp:*
 Bound cannot be improved further without change of proof strategy
Strategy: Reduction to r-spread Families

- **Key Definition**: \mathcal{F} is **r-spread** if $|\mathcal{F}| \geq r^k$ and for every nonempty $S \subseteq X$ the number of sets in \mathcal{F} which contain S is at most $r^k - |S|$

The Inductive Reduction

If every r-spread family contains p disjoint sets, then r^k sets guarantees a sunflower.

Proof. Induction on k.

Question: How to find p disjoint sets in an r-spread family?

- We now review the common proof framework of previous work.
Strategy: Reduction to Main Technical Lemma

Question: How to find p disjoint sets?

The Probabilistic Method

1. Consider a random partition of X to X_1, X_2, \ldots, X_p ($x \in X$ goes in random X_i)

2. Use **probabilistic method**
 - Show $P(\emptyset S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_i) < \frac{1}{p}$
 - **Union bound:**
 $P(\exists i \text{ where } X_i \text{ has no } S_i) < p \cdot \frac{1}{p} = 1$
 - There is partition where each X_i has S_i
 - Then S_1, \ldots, S_p are disjoint sets in \mathcal{F}

Main Technical Lemma (Rao 2020)

Let X_p be set where $\forall x \in X$, $x \in X_p$ w.p. $\frac{1}{p}$ independently. $\exists C > 1$ s.t. for $r \geq Cp \log(pk)$, $P(\text{There does not exist } S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_p) < \frac{1}{p}$
Our Probabilistic Improvement

Main Technical Lemma (Rao 2020)

Let X_a be set where $\forall x \in X, x \in X_a$ w.p. $\frac{1}{a}$ independently. $\exists C > 1$ s.t. for $r \geq Ca \log(bk)$, $\mathbb{P}(\text{There does not exist } S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_a) < \frac{1}{b}$

Bell–Chueluecha–Warnke (September 2020)

$r = O(p \log k)$ is sufficient to guarantee a sunflower

Proof Sketch (improve union bound via linearity of expectation):

- Partition X_1, \cdots, X_{2p} instead of X_1, \cdots, X_p.
- To get p disjoint sets, half of our sets need to contain a set in \mathcal{F}
- Linearity of expectation: if each X_i has less than half chance of failure, there is some partition where at least half succeed
- Apply main lemma with $a = 2p$, $b = 2$
- $r = 2Cp \log(2k) = O(p \log k)$ suffices!
Summary

A family of sets \(\mathcal{F} \) is a **sunflower with \(p \) petals** if \(|\mathcal{F}| = p \) and there exists \(Y \subseteq X \) with \(Y = S_i \cap S_j \) for all distinct \(S_i, S_j \in \mathcal{F} \).

Research Question

What is the smallest \(r = r(p, k) \) such that every \(k \)-uniform family with at least \(r^k \) sets must contain a sunflower with \(p \) petals?

- **Erdős–Rado (1960)**: \(r = pk \) is sufficient and \(r > p - 1 \) is necessary
- **Erdős (1981)**: Conjectured \(r = r(p) \) sufficient
- **Alweiss–Lovett–Wu–Zhang (2019)**: Breakthrough that \(r = p^3(\log k)^{1+o(1)} \) suffices
- **Rao (2020)**: By Shannon’s Coding Theorem, \(r = O(p \log(pk)) \) suffices

Bell–Chueluecha–Warnke (2020)

- \(r = O(p \log k) \) suffices by minor variant of existing probabilistic arguments
- This bound cannot be improved without change of strategy

Open Problem: Can the sunflower problem be attacked via analytic combinatorics?
References

- Erdős (1981). *On the combinatorial problems which I would most like to see solved*. Combinatorica.