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Problem

Sorting problem. Recover an unknown permutation (3, 1, 4, 5, 2)
using pairwise queries “a < b ?”.

Active clustering. Recover an unknown set partition
{{1, 3}, {2, 5}, {4}} using pairwise queries “a ∼ b ?”.

In both cases, the complexity is the number of queries.

We have not found this very natural setting in the literature,
any suggestion would be greatly appreciated.
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Transitivity. If a ∼ b then query(a, c) = query(b, c)

Aggregated graph
vertex = set of similar elements

edge = dissimilar groups of elements

Answer to a query (u, v)
positive → merge u and v

negative → add an edge (u, v)



Structure of the talk

Theorem 1. Characterize the active clustering algorithms reaching
the minimal average complexity.

Theorem 2. Those algorithms share the same complexity
distribution.

Theorem 3. Characterize this distribution and prove a Gaussian
limit law.

Motivation. From Maria Laura Maag (Nokia), improve the
classification of training data by human experts to feed a
supervised learning software.



Interesting problem

We assume uniform distribution on the partitions.

Initial conjecture. All non-trivial queries lead to the same average
complexity.

Counter-example. Average complexity 13
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Unexpected answer

Theorem 1. An active clustering algorithm has minimal average
complexity iff all aggregated graphs are chordal.

Induced graph. The graph is induced in but not in .

Chordal graph. A graph is chordal if all induced cycles are triangles.

chordal ; non-chordal

Chordal query (u, v). The intersection of the neighborhoods
N (u) ∩N (v) separates u and v .

12

3 4

query (1, 3) is chordal, while
(1, 4) is not.



Proof of Theorem 1

If the partition contains n elements and k blocks B1, . . . ,Bk , then
number of positive answers = n − k

number of negative answers =
∑

i<j # queries between Bi and Bj

If we know there are 2 blocks, then queries between ends of odd
induced paths are wasteful (automatic negative answer)

?

An algorithm has minimal average complexity on 2 blocks iff it
avoids wasteful queries.



Proof of Theorem 1

Chordal algorithms avoid potential wasteful queries for all subsets
that could be the union of two blocks. Indeed, bipartite induced
subgraphs of chordal graphs are forests.

Non-chordal algorithms contain at least one wasteful query.
Consider the aggregated graph after a negative answer to the first
query that creates an induced cycle C of length ≥ 4. If |C | is even,
the query was wasteful. Otherwise, the first query inside C will be
wasteful.



Theorem 2

Theorem 1. An active clustering algorithm has minimal average
complexity iff it is chordal.

Theorem 2. All chordal algorithms have the same complexity
distribution.

Proof. By induction on the number of missing edges of the
aggregated graph, we prove that all chordal queries give the same
complexity distribution.

Initialization. If G is a complete graph, there are no more queries
to ask.



Proof of Theorem 2

Notations. G (u, v) = add edge, G (u/v) = merge vertices.
If G and G (u, v) are chordal, then so is G (u/v).

The complexity distribution is the height distribution of the leaves
of the query tree.

Induction. Consider two chordal queries (u, v) and (w , x). If
G (u, v)(w , x) is chordal, then the queries can be switched



Proof of Theorem 2

Otherwise, G , G (u, v), G (w , x) are chordal, G (u, v)(w , x) is not.
This constrains the structure of G

Asking (u, v) or (w , x), then turning A and B into cliques lead to
two symmetrical situations, so the complexity distributions are the
same.



Theorem 3

Bell number Bn = number of set partitions of size n
Lambert function W (x) = solution of wew = x
q-analog [n]q = 1 + q + · · ·+ qn−1

q-factorial [n]q! = [1]q × [2]q × · · · × [n]q
q-exponential eq(z) =

∑
n≥0

zn

[n]q!

q-Pochhammer (a; q)n = (1− aq0)× · · · × (1− aqn−1)

Theorem 3. Let Xn denote the complexity of a chordal algorithm
on a partition of size n chosen uniformly at random.
The probability generating function (PGF) of Xn is equal to

1
Bn

(
q

1−q

)n∑n
k=0

(n
k

)
(−1)k

(
1−q
q ; q

)
k

and 1
Bn

1
eq(1/q)

∑
m≥0

[m]nq
[m]q!

qn−m.

The normalized variable (Xn − En)/σn converges in distribution to
a standard Gaussian law, where

En = 1
4(2W (n)− 1)e2W (n) and σn = 1

3

√
3W (n)2−4W (n)+2

W (n)+1 e3W (n).



A q-analog of Bell numbers

The generating function P(z) of set partitions is

P(z) = Set(NonEmptySet(z)) = ee
z−1

so the nth Bell number is

Bn = n![zn]P(z) =
n!

e
[zn]

∑
m≥0

emz

m!
=

1

e

∑
m≥0

mn

m!

Our second formula for the complexity GF is a q-analog

1

eq(1/q)

∑
m≥0

[m]nq
[m]q!

qn−m.



Universal active clustering algorithm

Theorem 1. The active clustering algorithms with minimal average
complexity are the chordal algorithms.

Theorem 2. All chordal algorithms share the same complexity
distribution.

Thus, we analyze a particular case: the universal active clustering
(UAC) algorithm.

def UAC(S):

if S is empty:

return empty partition

else:

u = S.pop()

query u with all elements from S

B = block containing u

Q = UAC(S \ B)

return partition Q with an additional block B



Example of UAC execution



Generating function of UAC complexity

Generating function of set partitions P(z) =
∑

partition p
z |p|

|p|!

Bijection
partition (not counting the largest label) pair (partition, set)

{{1, 3}, {4}, {2, 5, 6}} ({{1, 3}, {4}}, {2, 5})

Symbolic method ∂zP(z) = P(z)ez

(no surprise, as P(z) = ee
z−1).

Additional variable q marking the queries used by UAC

P(z , q) =
∑

partition p

qqueries(p)
z |p|

|p|!
, ∂zP(z , q) = P(qz , q)eqz



Solving the differential equation

Since f (z , q) = e
q

1−q
z satisfies the similar diff eq

∂z f (z , q) =
q

1− q
f (qz , z)eqz

we search solutions of the form P(z , q) = A(z , q)f (z , q).

Diff eq on P(z ,w) → diff eq on A(z , q) → recurrence on its Taylor coefficients

A(z , q) =
∑
k≥0

(
1− q

q
; q

)
k

(
− q

1−q z
)k

k!



Exact expressions

We obtain by direct coefficient extraction

n![zn]P(z , q) =

(
q

1− q

)n n∑
k=0

(
n

k

)
(−1)k

(
1− q

q
; q

)
k

.

To prove the second expression

n![zn]P(z , q) =
1

eq(1/q)

∑
m≥0

[m]nq
[m]q!

qn−m,

we apply the classic q-identities

[n]q! =
(q; q)n

(1− q)n
,

1

(x ; q)∞
=
∑
n≥0

xn

(q; q)n
, eq(x) = ((1−q)x ; q)−1∞ .



Limit law

To obtain the Gaussian limit law, we prove that the Laplace
transform of the normalized random variable X ?

n = (Xn − En)/σn

E(esX
?
n ) = PGFn(es/σn)e−sEn/σn

converges to the Laplace transform of the standard Gaussian es
2/2

pointwise for s in a neighborhood of 0.

To do so, we apply the Laplace method for sums to

PGFn(es/σn) =

 1

Bn

1

eq(1/q)

∑
m≥0

[m]nq
[m]q!

qn−m


q=es/σn



Local limit law

Green: probability density function of the standard normal law.
Blue, purple and red: empirical rescaled probability density
functions of chordal complexity for n ∈ {100, 300, 600}.



Conclusion

Open problem. Complexity of a random active clustering algorithm
avoiding trivial queries?

Other random partition model. Fix a bound k on the number of
blocks, each item chooses block i with probability pi .

Results. Average complexities of the conjectured best algorithm
and the random algorithm.

Noisy queries. Two models

correct at most k errors,

small probability p of error for each answer; minimize the
probability of undetected errors.


