Packing nearly optimal Ramsey R(3, t) graphs

He Guo

Georgia Tech

Joint work with Lutz Warnke

Topic of this talk

Construct pseudo-random triangle-free subgraphs of dense graphs

- Previous results only make such construction in complete graphs
- Construct via polynomial time randomized algorithm
 - Self-stabilization mechanism built into algorithm to control errors
- Approximately decompose complete graph into such Δ -free graphs
 - Solve a Ramsey theory conjecture by Fox, Liebenau, Person, Szabo et al

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n}\log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

Both find an *n*-vertex graph $G \subseteq K_n$ such that *G* is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

• Construct G by (semi-random variation of) Δ -free process: greedily add random edges that do not create a Δ

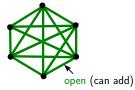
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



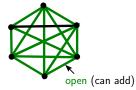
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



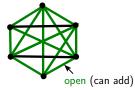
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



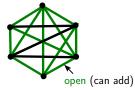
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



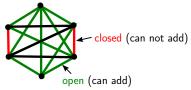
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



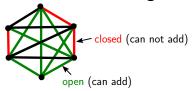
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



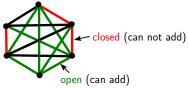
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that

G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph Both find an *n*-vertex graph $G \subseteq K_n$ such that G is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$



Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an *n*-vertex graph $G \subseteq K_n$ such that *G* is Δ -free with independence number $\alpha(G) \leq C\sqrt{n} \log n$

• Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

Both find an *n*-vertex graph $G \subseteq K_n$ such that *G* is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ -free process: greedily add random edges that do not create a Δ
- * Tight up to the constant: Ajtai-Komlós-Szemerédi (1980)
- * Lead to the right order of magnitude of Ramsey number R(3,t)
 - Kim received Fulkerson Prize in 1997

Main Result: nearly optimal R(3, t) graphs

Kim (1995) + Bohman (2008): one nearly optimal R(3, t) graph

Both find an *n*-vertex graph $G \subseteq K_n$ such that *G* is Δ -free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

 Using (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

G., Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that (a) each G_i is *n*-vertex Δ -free with $\alpha(G_i) \leq C_{\varepsilon}\sqrt{n \log n}$ (b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

- Using simple *polynomial-time randomized algorithm*: sequentially choose G_i via semi-random variation of Δ-free process
 - Start with $H_0 = K_n$
 - Find $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$ and repeat

Glimpse of the proof

Main-Technical-Result: find pseudo-random Δ -free subgraph $G \subseteq H$

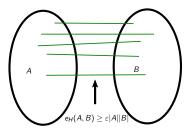
Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_H(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.



Glimpse of the proof

Main-Technical-Result: find pseudo-random Δ -free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_{H}(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.

• Pseudo-randomness of *G_i* ensures all local parts of *H_i* behave similarly **Implies packing result:**

• Start with $H_0 = K_n$

• Sequentially choose $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$

$$e_{H_i}(A,B) = (1-(1\pm\delta)\varrho)^i |A||B|$$

• Stop when $e_{H_l}(A,B) \approx \varepsilon |A||B|$ holds

Main-Technical-Result: find pseudo-random Δ -free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta(\log n)/n}$ and $s := C_{\varepsilon}\sqrt{n\log n}$. If $H \subseteq K_n$ is such that

 $e_H(A,B) \geq \varepsilon |A||B|$

for all disjoint sets A, B of size s, then we can find Δ -free $G \subseteq H$ with

 $e_G(A,B) = (1 \pm \delta) \varrho e_H(A,B)$

for all disjoint A, B of size s.

Proof based on semi-random variation of Δ -free process:

- Do not require degree/codegree regularity of H
- 'Self-stabilization' mechanism built into process (to control errors)
- Tools: Bounded-Differences-Ineq. and Upper-Tail-Ineq. of Warnke

Summary

G., Warnke (2020): almost packing of nearly optimal R(3, t) graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in \mathcal{I}}$ with $G_i \subseteq K_n$ such that (a) each G_i is *n*-vertex Δ -free with $\alpha(G_i) \leq C_{\varepsilon}\sqrt{n \log n}$ (b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

Remarks

- Can find the $(G_i)_{i \in \mathcal{I}}$ via polynomial time randomized algorithm
- Applications in Ramsey theory: solve a conjecture of Fox, Liebenau, Person, Szabo et al

Open problem

Other applications of 'self-stabilization' in design of randomized algorithms?

Reference

He Guo, Lutz Warnke, Packing nearly optimal Ramsey R(3, t) graphs, Combinatorica **40**, 63–103 (2020)