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Introduction

There are many applications that involve making a huge
number of distance/similarity evaluations between complex
objects
For example:

Locate the best match for a song or image
Find the best match for some DNA sample in a crime scene
Cluster data into groups
Facial recognition
Reconstruct a phylogenetic tree
. . .



Introduction

Several different (and often complementary) approaches to
reduce the computational cost

1 Reduce the number of distance evaluations organizing the
data (vp-trees, Burkhard-Keller trees, GHTs, GNATs, . . . )
exploiting triangle inequality

2 Filter with a simpler distance function δ ′:
δ ′(A,B) > r ′ =⇒ δ(A,B) > r

3 Reduce the “dimensionality” using a simpler distance
function with approximation guarantees



Introduction

We focus here in distance/similarity measures between sets
and multisets

In many applications we can modellize our complex object
as a set or multiset
For example,

from a long DNA sequence we can extract the set/multiset
of k-mers
from a textual document we can extract the vocabulary, the
set of distinct words (or stems) in the document
. . .



Similarity measures

Consider two sets A and B.

Jaccard’s index |A∩B|
|A∪B|

Otsuka-Ochiai (a.k.a. Cosine) |A∩B|√
|A|·|B|

Sørensen-Dice 2 |A∩B|
|A|+|B|

Kulczynski 1 |A∩B|
|A4B|

Kulczynski 2 1
2

(
|A∩B|
|A|

+
|A∩B|
|B|

)
Simpson |A∩B|

min(|A|,|B|)

Braun-Blanquet |A∩B|
max(|A|,|B|)

Correlation cos2(A,B) = |A∩B|2
|A|·|B|

. . . . . .



Estimating Similarity

Let SA and SB two random samples of A and B, resp., and σ a
similarity measure.

Does σ(SA,SB) give us an unbiased estimation of σ(A,B)?
If not, can we find an unbiased estimator for σ(A,B) from
the information in the samples?
How accurate are these estimations? How do they depend
on the size of the samples? =⇒ trade-off: large samples
should lead to more accurate estimates but
computationally more costly!



Sampling

procedure DISTINCTSAMPLING(k,Z)
fill S with the first k distinct elements (and hash values)
of the stream Z

for all z ∈ Z do
if HASH(z) < min hash value in S then

Discard z; continue
. HASH(z) > min hash value in S
if z ∈ S then

Update z stats
else . replace elem of min. hash with z
S← S \ {elem. with min. hash in S} ∪ {z}

return S



Distinct Sampling

The algorithm draws a random sample of k distinct
elements (each one has prob. 1/n of being drawn,
n = number of distinct elements), by keeping in the sample
the k elements with the largest hash values seen so far1

If we use uniform random numbers in (0, 1) instead of hash
values (and don’t check if z ∈ S)⇒ Reservoir Sampling

1Pragmatic assumptions: hash values uniformly distributed; probability of
collisions negligible



Affirmative Sampling (Lumbroso & M.,
2019)

The larger the cardinality (n) the larger the samples⇒
samples better represent diversity
All distinct elements have the same opportunity to be
sampled



Affirmative Sampling

procedure AFFIRMATIVESAMPLING(k,Z)
fill S with the first k distinct elements (and hash values)
of the stream Z

for all z ∈ S do
if HASH(z) < min hash value in S then

Discard z; continue
. HASH(z) > min hash value in S
if z ∈ S then

Update z stats
else if HASH(z) > k-th largest hash value in S then
S← S ∪ {z}

else . replace elem of min. hash with z
S← S \ {elem. with min. hash in S} ∪ {z}

return S



Affirmative Sampling

The size of the sample S is a random variable = the
number of k-records in a random permutation of size n
The sample does not contain the k-records, but the |S|

elements with the largest hash values seen so far⇒ S is a
random sample
If x ∈ S then x has been added to S in its very first
occurrence and it has remained in S ever since⇒ can
collect exact stats (e.g. frequency counts) for x



Affirmative Sampling

Properties of |S| are very well understood; in particular

E {|S|} = k ln(n/k) + l.o.t.

The exact and asymptotic distribution of R, moments, . . . is
known (e.g., Helmi, M., Panholzer, 2014)
Estimating cardinality (RECORDINALITY, Helmi, Lumbroso,
M., Viola, 2012)

E

{
k

(
1 +

1
k

)|S|−k+1

− 1

}
= n



Affirmative Sampling

We also understand fairly well F = number of times an
element substitutes another in the sample (not a k-record,
but larger than some k-record):

E {Fn} = k ln2(n/k) + l.o.t.

Expected cost of Affirmative Sampling

E {C} = Θ(N+ (E {|S|}+ E {F}) log E {|S|})

= Θ(N+ (log2 n) · (log logn))

using hashing for membership and a couple of priority
queues (one of fixed size k, the other of size |S|− k)



Estimating Proportions

Let P some property.
n = # of distinct elements
nP = # of distinct elements that satisfy P
S = size of the sample⇐ in general, a r.v., assume
2 6 S 6 n

SP = # of elements in the sample that satisfy P

Theorem

1 E
{
SP
S

}
= nP

n

2 V
{
SP
S

}
∼
np
n ·

(
1 −

np
n

)
· E
{ 1
S

}
For affirmative sampling E {1/S} ∼ 1/E {S} = 1/(k ln(n/k))



Estimating the Jaccard similarity

SA and SB random samples from A and B, resp.
For any set X let τX = min{hash(x) | x ∈ X} and
X>τ = {x ∈ X |hash(x) > τ}
Let τ = max{τSA , τSB}. Then

1 S>τA ∪ S
>τ
B = (SA ∪ SB)>τ is a random sample of A ∪ B

2 (S>τA ∪S
>τ
B )∩(A∩B) = (S>τA ∩S

>τ
B ) = (SA∩SB)>τ = (SA∩SB)



Estimating the Jaccard similarity

Theorem

1 E
{
J(S>τA ,S>τB )

}
= J(A,B) = |A∩B|

|A∪B|

2 V
{
J(S>τA ,S>τB )

}
∼
J(A,B)·(1−J(A,B))
k ln(|A∪B|/k)



Estimating the size of the intersection

Moreover we can estimate the size of the intersection with:

Z1 =
|SA ∩ SB|

|SA|
·

(
k

(
1 +

1
k

)|SA|−k+1

− 1

)

Z2 =
|SA ∩ SB|

|SA|
· |SA|− 1

1 − τSA

E {Z1} = E {Z2} = |A ∩ B|

N.B. No need to “filter” the sample SA



Estimating other similarity measures

The same proof that works for Jaccard’s similarity also works
for:

1 Containment: c(A,B) = |A ∩ B|/|A| (this index is 1 if
A ⊆ B); E {c(SA,SB)} = c(A,B)

2 If σ is any of Jaccard, Simpson, Braun-Blanquet,
Kulczynski 2 or Sørensen-Dice:

E
{
σ(S ′A,S ′B)

}
= σ(A,B)

3 We conjecture this also holds (asymptotically) for cosine,
correlation and Kulczynski 1



A few simulations

|A| = 1000, |B| = 1500, J(A,B) = 0.25
red line = avg. of 100 experiments
yellow band = avg ± std. deviation
green lines = 95% of observations



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = J(A,B) = |A ∩ B|/|A ∪ B|



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = Sørensen-Dice(A,B) = 2|A ∩ B/(|A|+ |B|)



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = Braun-Blanquet(A,B) = |A ∩ B|/max(|A|, |B|)



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = Simpson(A,B) = |A ∩ B|/min((|A|, |B|)



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = K1(A,B) = |A ∩ B|/|A4B|



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = K2(A,B) = 1

2 (|A ∩ B|/|A|+ |A ∩ B|/|B|)



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = cos(A,B) = |A ∩ B|/

√
|A| · |B|



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
red line = Corr(A,B) = |A ∩ B|2/(|A| · |B|)



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
blue line = sample standard error for J(A,B)
red line = SEn [σ̂] =

√
V {σ̂}/σ



A few simulations

|A| = 1000, |B| = 1500, |A ∩ B| ∈ {0, 10, . . . , 1000}
blue line = sample standard error for cos(A,B)
red line = SEn [σ̂] =

√
V {σ̂}/σ



Some final remarks

Experiments suggest that the standar error of all similarity
estimators σ̂ behave in all cases as

SEn [σ̂] =

√
V {σ̂}

E {σ̂}
∼

1√
σ · |S|

,

not only for Jaccard.
N.B. We can make |S|→∞ as |A|, |B|→∞ using affirmative
sampling, without commiting to a fixed large value of k, but
making the standard error go to 0 (albeit slowly).



Some final remarks

Prove the conjecture about unbiased estimation of the
similarity measures: cosine, correlation, Kulczynski 1
Prove the conjecture about the standard error for the
different studied similarity measures
Extend our work to other similarity/distance measures: we
are aware of almost 80 similarity/distance
measures—however many are not interesting in this
context as they count also negative matches (the number
of elements neither in A nor in B)
Carry out the analysis of similarity measures for multisets:
on-going work, works for Jaccard similarity—however, we
need to sample items according to their frequencies, we
have not to use distinct sampling


