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Introduction

@ There are many applications that involve making a huge
number of distance/similarity evaluations between complex
objects

@ For example:

Locate the best match for a song or image

Find the best match for some DNA sample in a crime scene

Cluster data into groups

Facial recognition

Reconstruct a phylogenetic tree



Introduction

Several different (and often complementary) approaches to
reduce the computational cost
@ Reduce the number of distance evaluations organizing the
data (vp-trees, Burkhard-Keller trees, GHTs, GNATSs, ...)
exploiting triangle inequality
@ Filter with a simpler distance function 5':
3 (A,B)>1" = §6(A,B) >
© Reduce the “dimensionality” using a simpler distance
function with approximation guarantees



Introduction

We focus here in distance/similarity measures between sets
and multisets

@ In many applications we can modellize our complex object
as a set or multiset

@ For example,
e from a long DNA sequence we can extract the set/multiset
of k-mers

e from a textual document we can extract the vocabulary, the

set of distinct words (or stems) in the document
o ...



Consider two sets A and B.

Similarity measures
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Estimating Similarity

Let SA and Sg two random samples of A and B, resp., and o a
similarity measure.

@ Does o(Sa,Sg) give us an unbiased estimation of o(A, B)?

@ If not, can we find an unbiased estimator for o(A, B) from
the information in the samples?

@ How accurate are these estimations? How do they depend
on the size of the samples? — trade-off: large samples
should lead to more accurate estimates but
computationally more costly!



Sampling

procedure DISTINCTSAMPLING(k, Z)
fill S with the first k distinct elements (and hash values)
of the stream Z
forall z € Z do
if HASH(z) < min hash value in S then
Discard z; continue
> HASH(z) > min hash value in S
if z € S then
Update z stats
else > replace elem of min. hash with z
S < S\ {elem. with min. hash in S} U {z}

return S



Distinct Sampling

@ The algorithm draws a random sample of k distinct
elements (each one has prob. 1/n of being drawn,
n = number of distinct elements), by keeping in the sample
the k elements with the largest hash values seen so far’

@ If we use uniform random numbers in (0, 1) instead of hash
values (and don’t check if z € S) = Reservoir Sampling

"Pragmatic assumptions: hash values uniformly distributed; probability of
collisions negligible



Affirmative Sampling (Lumbroso & M.,
2019)

ﬁ
&

@ The larger the cardinality (n) the larger the samples =
samples better represent diversity

=

@ All distinct elements have the same opportunity to be
sampled



Affirmative Sampling

procedure AFFIRMATIVESAMPLING(k, Z)
fill S with the first k distinct elements (and hash values)
of the stream Z
forall z € Sdo
if HASH(z) < min hash value in S then
Discard z; continue
> HASH(z) > min hash value in S
if z € S then
Update z stats
else if HASH(z) > k-th largest hash value in S then
S« Su{z}
else > replace elem of min. hash with z
S < S\ {elem. with min. hash in S} U {z}

return S



Affirmative Sampling

@ The size of the sample S is a random variable = the
number of k-records in a random permutation of size n

@ The sample does not contain the k-records, but the |S|
elements with the largest hash values seen so far = S is a
random sample

@ If x € S then x has been added to S in its very first
occurrence and it has remained in S ever since = can
collect exact stats (e.g. frequency counts) for x



Affirmative Sampling

@ Properties of |S| are very well understood; in particular
E{|S|} = kIn(n/k) + Lo.t.

The exact and asymptotic distribution of R, moments, .. .is
known (e.g., Helmi, M., Panholzer, 2014)

@ Estimating cardinality (RECORDINALITY, Helmi, Lumbroso,
M., Viola, 2012)

1 [S|—k+1



Affirmative Sampling

@ We also understand fairly well F = number of times an
element substitutes another in the sample (not a k-record,
but larger than some k-record):

E{Fn} =kIn®(n/k) + l.o.t.
@ Expected cost of Affirmative Sampling

E{C} =O(N + (E{ISI} + E{F}) log E{IS]})
= O(N + (log®n) - (loglogn))

using hashing for membership and a couple of priority
queues (one of fixed size k, the other of size |S| — k)



Estimating Proportions

Let P some property.
@ n = # of distinct elements
@ np = # of distinct elements that satisfy P

@ S = size of the sample < in general, a r.v., assume
2<S<n

@ Sp = # of elements in the sample that satisfy P
Theorem

OE{y}="

@ v{¥}-t(1-%)E{

For affirmative sampling E{1/S} ~ 1/E{S} =1/(kIn(n/k))



Estimating the Jaccard similarity

@ S and Sg random samples from A and B, resp.

@ For any set X let tx = min{hash(x) |x € X} and
XZT ={x € X|hash(x) > 1}
@ Let T = max{ts,,ts,}. Then
@ SZTUSZ" = (Sa USg)>Tis arandom sample of AU B
@ (SZTUSZ)N(ANB) = (SZTNSZ™) = (SANSE)>™ = (SANSE)



Estimating the Jaccard similarity

Theorem
@ E{J(s3%55M ) = (A, B) = 308

2T 2T J(A,B)-(1-J(A,B))
2 V{J(SA 'S5 )} ~ T XIn(AUBI/K)




Estimating the size of the intersection

Moreover we can estimate the size of the intersection with:

|SA N SB| 1 |SAl—k+1
Zy=2A 2B k(14— —1
" TS A T

1
7, = ISANSe| [Sal

|SA| 1 _TSA

E{Zi} =E{Zz} =|ANB|

N.B. No need to “filter” the sample S5



Estimating other similarity measures

The same proof that works for Jaccard’s similarity also works
for:

@ Containment: c(A,B) = |A N B|/|A]| (this index is 1 if
A C B); E{c(Sa,SB)} =c(A,B)

@ If o is any of Jaccard, Simpson, Braun-Blanquet,
Kulczynski 2 or Sgrensen-Dice:

E{0(Sh,Sg)} = 0(A,B)

© We conjecture this also holds (asymptotically) for cosine,
correlation and Kulczynski 1



A few simulations
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A few simulations
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A few simulations

Sorensen-Dice coefficient
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A few simulations

Braun-Blanguet coefficient
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A few simulations

Simpson coefficient

= = = [
= o o =]
L L L

Similarity

=
[N]
L

0.0+

0 200 400 £00 800 1000
Intersection

|A| = 1000, |B| = 1500, |]ANB| €{0,10,...,1000}
red line = Simpson(A, B) = |A N B|/ min((|Al, |B)



A few simulations

Kulczynsky 1 coefficient
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A few simulations

Kulczynsky 2 coefficient
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A few simulations

Cosine coefficient
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A few simulations

Correlation ratio coefficient
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A few simulations
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A few simulations
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Some final remarks

Experiments suggest that the standar error of all similarity
estimators ¢ behave in all cases as

SE.. [5] — VvV {6} 1

E {6} oIS’

not only for Jaccard.

N.B. We can make |S| — oo as |A|,|B| — oo using affirmative
sampling, without commiting to a fixed large value of k, but
making the standard error go to 0 (albeit slowly).



Some final remarks

@ Prove the conjecture about unbiased estimation of the
similarity measures: cosine, correlation, Kulczynski 1

@ Prove the conjecture about the standard error for the
different studied similarity measures

@ Extend our work to other similarity/distance measures: we
are aware of almost 80 similarity/distance
measures—however many are not interesting in this
context as they count also negative matches (the number
of elements neither in A nor in B)

@ Carry out the analysis of similarity measures for multisets:
on-going work, works for Jaccard similarity—however, we
need to sample items according to their frequencies, we
have not to use distinct sampling



