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A toy example

BST built from a random permutation of {1,...

Lo, = # nodes with no left descendant,
L1, = # nodes with exactly one left descendant.

For Y, := (Lon, L1,), we have Yy = (0,0) and

VoYl e b oz,

1,m_
with 7~ unif{0,....n—1}, " =n—1—1 and b, = | 14 ).
l{li"):l}

For n > 4 (cf. Devroye 1991),

E[Y,] = (n+1) < 1;2 ) Cov(Y,) = (n+1) 3(150 ( _3?5 —2;5 )

and we have asymptotic normality (n — oo):

Cov(Y,) Y2(Y, — E[Y,]) - N(0,1dy).
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General recursion

recursion before:

g

Yo 2 YO 4+ Y@ b, n>1
2

(
"

general recursion:

Yn

1ES
M =

Ar(n) \/I((:)) + bm nz No,

r=1

Y,, random vector in RY,

>

> K number of subproblems,

> () = (/{”), o I,(<")) € {0,...,n}¥ sizes of subproblems,
> Ai(n),...,Ax(n) random (d x d)-matrices,

> b, random vector in RY,

> (Y,Sr))nzo g (Yn)nZO for r = 17. Cey K,

> (Ar(n), - Ak(n), by, 1), (Vi) nzo, . (YA pz0 are
independent.
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The contraction method

General recursion:

Y_ZA ’)+bn, n> no.
We define the normalized sequence (X,)n>0 by

X, :=CY2(Y,—M,), n>0

where M, is a d-dimensional vector and C, a positive definite
(d x d)-matrix. The normalized quantities satisfy the following modified

recursion: K
g Z A ) n> ng,
r=1
with
K
AN = 127 (n )Cl(/)Z, b = c1/2 (b,, - M, + ZAr(n)/\/I,r(n)>
r r=1

and independence relations as before.
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The contraction method

Modified recursion (n > ng):

K
X, &3 (AN + (60

r=1_, A* — b*

Limit equation (n — 00):

K
XE3" AXO) 4 b

r=1

with (A7, ... A%, b*), X . XK independent and X() < X for
r=1,...,K.

A A

Idea: o) s

— X, = X

Now:

K
DA = A, + 6 ], = OR() = 606 %) = O(R(r)

r=1



Convergence result

— A general transfer theorem

Let (X,)n>0 be given as before. We assume that there exists some
monotonically decreasing sequence R(n) | 0 such that, as n — oo,

K
LDl - A

r=1

69— b

K
st Z Hl{/ﬁ”)<z}A£n)Hs = O(R(n))
r=1

for all £ € N. If the technical condition ‘|l{l(n):n}A£”)Hs —~0is
satisfied for r =1,..., K and if

K (n)
. R(E™) i a5
I|,r1n_>sot<13p E;( R(7) | A ||Op <1,

then we have, as n — oo,

<5(X,,,X) = O(R(n))7

where X is the unique solution of the limit equation in M(0,1dy).




Convergence result |l

— A refined version for the normal case

Let (Xn)n>0 be given as before. We assume that the limit coefficients
satisfy b* = 0 and 25:1 A*(A*)T = Id4 almost surely and that there
exists some sequence R(n) | 0 such that, as n — oo,

K 3/2 K
[5O[S APANT T [+ D110 APl = OR()
r=1 r=1

for all /£ € N. If the technical condition ||1{I(")=n}A£n)"3 — 0 is
satisfied for r =1,..., K and if

R(I™)

K
l E Al |1 1
msup z( (GO y|op> 1

then we have, as n — oo,

G3(Xn, N(0,1d4)) = O(R(n)).
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Applications

Maxima in right triangles

Y,, = number of maxima in a random sample of n points chosen uniformly
and independently in the right triangle with corners (0, 0), (0,1) & (1,0)

— Bai, Hwang, and Tsai (2003)

Denoting by @ the standard normal distribution function, we have,

as n — 00,
igng P(n\:TE;[;n)] < X) - o(x)|=0 <n71/4> ‘

— With our theorem

We have, as n — 00,

Y"_E[Yn] _1/4
@(m,/\/(m)) -0 (n / )
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Applications

Quicksort

Y, = number of key comparisons needed by Quicksort

to sort n randomly permuted distinct numbers

— Neininger and Riischendorf (2002)

We have, as n — 00,

C3<Y,, fIE[Y,,]7X> _ o <Iogn) 7

v/ Var(Yy) n

where the limit X is given as the unique solution of a distributional
fixed-point equation.

— With our theorem

We have, for 2 < s <3 and as n — o0,

(Ve ) =0 (53,
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Applications

Size of m-ary search trees

Y, = number of (internal) nodes of an m-ary search tree constructed

from a random permutation of {1,...,n}

Hwang (2003)

As n — oo, we have

] P(Y E[Y,] _ ) ’_ *1/2) 3<m<19,
vk v/ Var(Y,) n=3(3/2=)) " 20 < m < 26.
m 3...19 20...26

3(3/2—a) | >1/2 | 0.45...0.002

With our theorem
For any £ > 0, we have as n — oo

E[Y,] O(n1/2+5),  3<m<19,
C3< Varvny @ )= { O(n36/2-0)) " 20 < m < 26.




Applications

BST built from a random permutation of {1,..., n}.

@)
Lo, = # nodes with no left descendant,

L1, = # nodes with exactly one left descendant. A A

— Theorem

Denoting by Y, := (Lon, L1,) the vector of the numbers of nodes
with no and with exactly one left descendant respectively in a random
binary search tree with n nodes we have, as n — oo, that

G3(Cov(Ya)~3(Ya — E[Ya]), N'(0,1d2)) = O(n™1/?).




Applications: periodic functions in mean & variance

— Theorem
Let (Y,)n>0 be 3-integrable and satisfy

d

Yo = YI((n)) + Y(n) + b, N> no,

with /") ~ Bin(n,3), K" = n—1(n) and |[bal|s = O(1). We assume
that, as n — oo, we have
E[Ya] = nPy(log, n) + O(1),
Var(Y,) = nPx(log, n) + O(1),

for some smooth and 1-periodic functions Py, P> with P, > 0. Then,
for any € > 0 and n — oo, we have

Y E[Y] —1/2+¢
C3<W N(0, )):O(n /2te),




Thank you!



