Greedy maximal independent sets via local limits

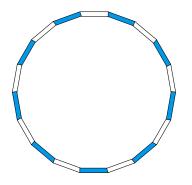
Peleg Michaeli

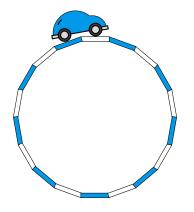
Tel Aviv University

The 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA2020)

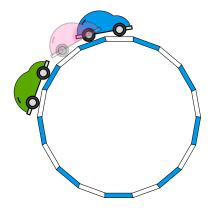
September 2020

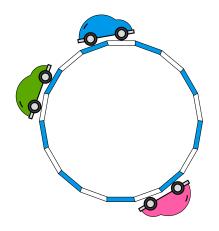
Joint work with Michael Krivelevich, Tamás Mészáros and Clara Shikhelman

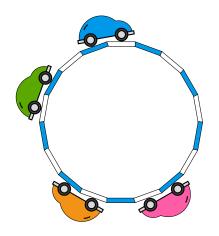


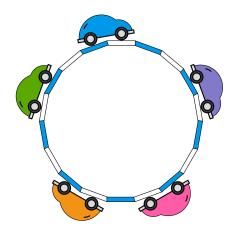


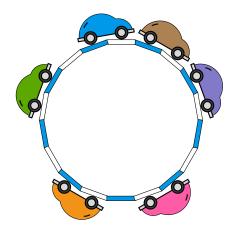


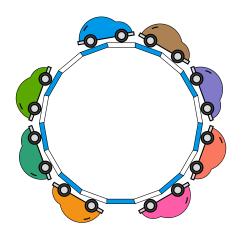












Independent sets

An *independent set* is a set of vertices in a graph, no two of which are adjacent.

Independent sets

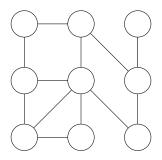
An independent set is a set of vertices in a graph, no two of which are adjacent.

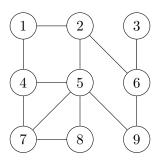
• Finding maximum independent sets is very hard

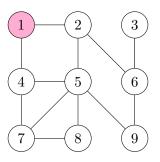
Independent sets

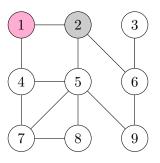
An *independent set* is a set of vertices in a graph, no two of which are adjacent.

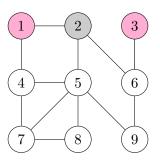
- Finding maximum independent sets is very hard
- Finding maximal independent sets is very easy

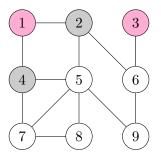


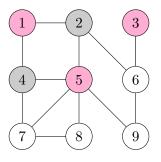


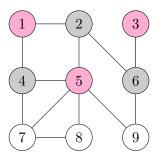


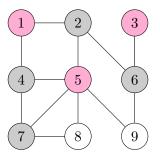


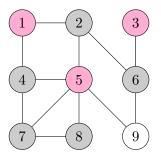


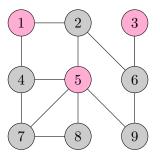


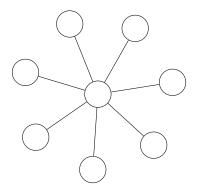


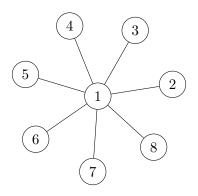


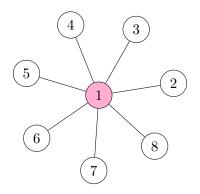


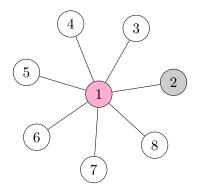


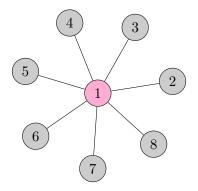


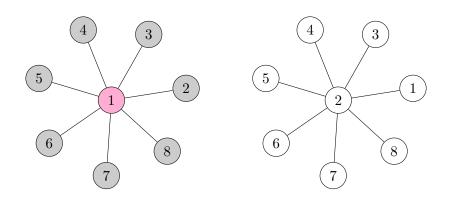


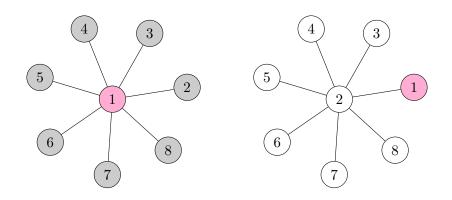


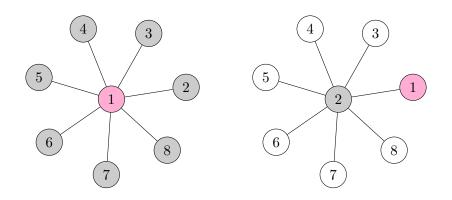


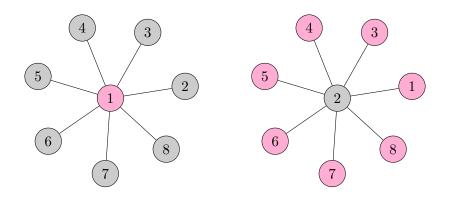




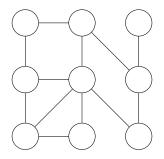




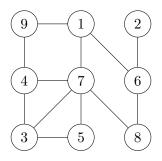


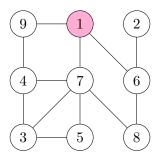


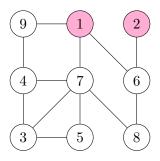
Random greedy MIS — sequential

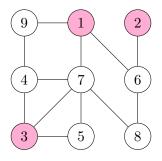


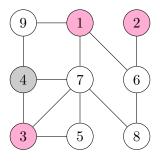
Random greedy MIS — sequential

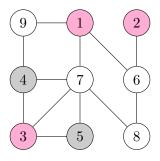


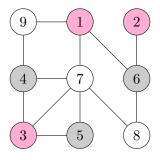


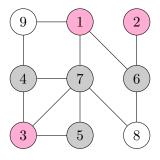


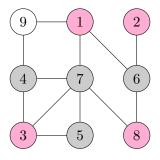


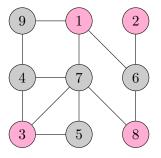


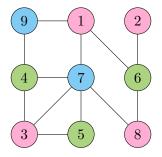












Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1 - e^{-2})$$

Let I(G) be the yielded independent set, and let $\iota(G) = |I(G)|/|V(G)|$.

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \big(1-(d-1)^{-2/(d-2)}\big)$

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G) = |\mathbf{I}(G)|/|V(G)|$.

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2}(1-(d-1)^{-2/(d-2)})$

Lauer–Wormald '07 (same for d-regular graphs with girth $\to \infty$)

Let I(G) be the yielded independent set, and let $\iota(G) = |I(G)|/|V(G)|$.

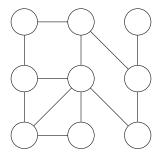
Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1 - e^{-2})$$

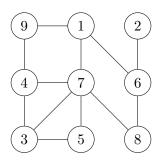
McDiarmid '84
$$\iota(G(n,d/n)) \to \log(1+d)/d$$

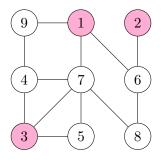
Wormald '95
$$\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} (1 - (d-1)^{-2/(d-2)})$$

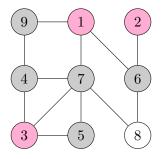
Lauer–Wormald '07 (same for d-regular graphs with girth $\to \infty$)

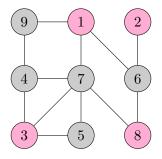
BJL '17, BJM '17 random graphs with given degree sequence

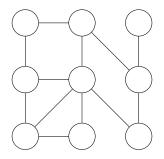


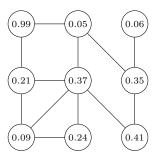


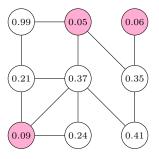


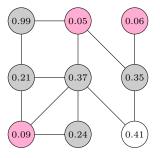


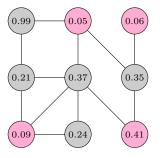


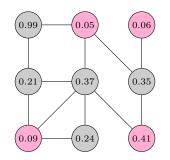




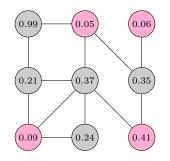




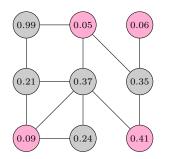


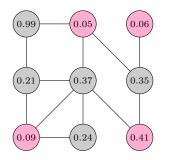


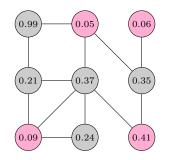
$$05) - (0.06) - (0.08) - (0.10) - (0.15) - (0.25) - (0.50) - (0.75) - (0.85) - (0.90) - (0.92) - (0.94) - (0.92) - (0.94) - (0.92) - (0.94) - (0.92) - (0.94) - (0.92) - (0.9$$

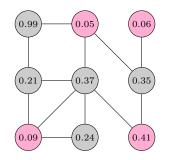


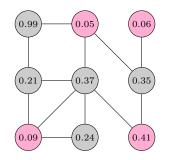
$$76 - 0.77 - 0.68 - 0.35 - 0.42 - 0.54 - 0.83 - 0.57 - 0.56 - 0.90 - 0.45 - 0.63 - 0.63$$











General framework

Let G_n be a graph sequence satisfying $|G_n| \to \infty$.

ullet We wish to calculate the asymptotics of $\iota(G_n)$.

General framework

Let G_n be a graph sequence satisfying $|G_n| \to \infty$.

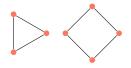
- We wish to calculate the asymptotics of $\iota(G_n)$.
- We approximate $\mathbb{E}[\iota(G_n)] = \mathbb{P}(\rho_n \in \mathbf{I}(G_n))$ for ρ_n chosen uniformly.

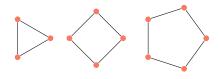
- We wish to calculate the asymptotics of $\iota(G_n)$.
- We approximate $\mathbb{E}[\iota(G_n)] = \mathbb{P}(\rho_n \in \mathbf{I}(G_n))$ for ρ_n chosen uniformly.
- We hope that this is determined by a small neighbourhood of ρ_n .

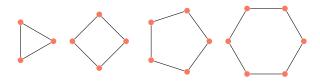
- We wish to calculate the asymptotics of $\iota(G_n)$.
- We approximate $\mathbb{E}[\iota(G_n)] = \mathbb{P}(\rho_n \in \mathbf{I}(G_n))$ for ρ_n chosen uniformly.
- ullet We hope that this is determined by a small neighbourhood of ho_n .
- Decay of correlation $\implies \iota(G_n) \sim \mathbb{E}[\iota(G_n)]$ a.a.s.

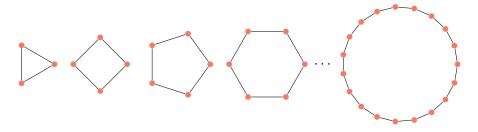
- We wish to calculate the asymptotics of $\iota(G_n)$.
- We approximate $\mathbb{E}[\iota(G_n)] = \mathbb{P}(\rho_n \in \mathbf{I}(G_n))$ for ρ_n chosen uniformly.
- ullet We hope that this is determined by a small neighbourhood of ρ_n .
- Decay of correlation $\implies \iota(G_n) \sim \mathbb{E}[\iota(G_n)]$ a.a.s.
- This local view of ρ_n is captured by the *local limit* of G_n .

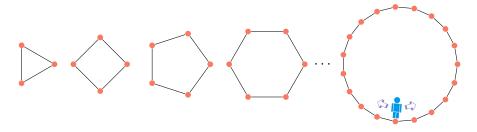
- We wish to calculate the asymptotics of $\iota(G_n)$.
- We approximate $\mathbb{E}[\iota(G_n)] = \mathbb{P}(\rho_n \in \mathbf{I}(G_n))$ for ρ_n chosen uniformly.
- ullet We hope that this is determined by a small neighbourhood of ρ_n .
- Decay of correlation $\implies \iota(G_n) \sim \mathbb{E}[\iota(G_n)]$ a.a.s.
- This local view of ρ_n is captured by the *local limit* of G_n .
- Develop a machinery to calculate the probability that the root of the local limit is red.

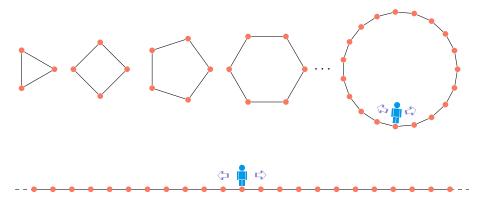












We say that a (random) graph sequence G_n converges locally to a (random) rooted graph (U,ρ) if for every $r\geq 0$ the ball $B_{G_n}(\rho_n,r)$ converges in distribution to $B_U(\rho,r)$, where ρ_n is a uniform vertex of G_n .

Examples

- $P_n, C_n \xrightarrow{\mathrm{loc}} \mathbb{Z}$
- $[n]^d \xrightarrow{\log} \mathbb{Z}^d$
- $G(n, d/n) \xrightarrow{loc} \mathcal{T}_d$, a Galton-Watson Pois(d) tree
- $G_{n,d} \xrightarrow{loc}$ the d-regular tree
- Uniform random tree $T_n \xrightarrow{\text{loc}} \hat{\mathcal{T}}_1$, a size-biased GW Pois(1) tree
- Finite d-ary balanced tree \xrightarrow{loc} the canopy tree

Say that G_n has *subfactorial path growth* if the expected number of paths from a typical vertex is subfactorial in their length.

Say that G_n has *subfactorial path growth* if the expected number of paths from a typical vertex is subfactorial in their length.

(bounded degree \subsetneq subfactorial path growth)

Say that G_n has *subfactorial path growth* if the expected number of paths from a typical vertex is subfactorial in their length.

(bounded degree \subsetneq subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman '20)

Suppose G_n has subfactorial path growth.

If $G_n \xrightarrow{\mathrm{loc}} (U, \rho)$ then $\iota(G_n) \to \iota(U, \rho)$ a.a.s.

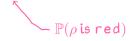
Say that G_n has *subfactorial path growth* if the expected number of paths from a typical vertex is subfactorial in their length.

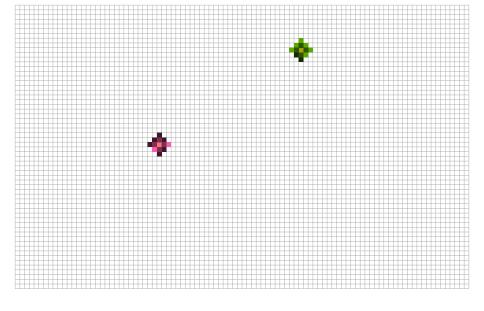
(bounded degree \subsetneq subfactorial path growth)

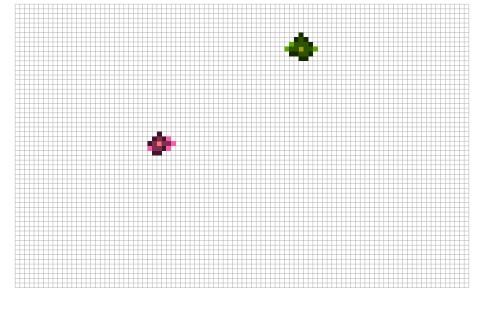
Theorem (Krivelevich, Mészáros, M., Shikhelman '20)

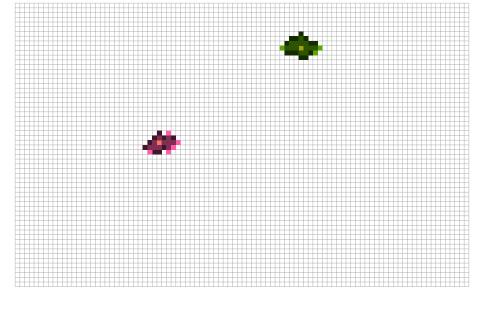
Suppose G_n has subfactorial path growth.

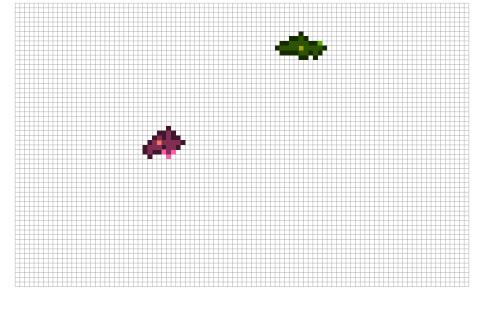
If $G_n \xrightarrow{\mathrm{loc}} (U, \rho)$ then $\iota(G_n) \to \iota(U, \rho)$ a.a.s.

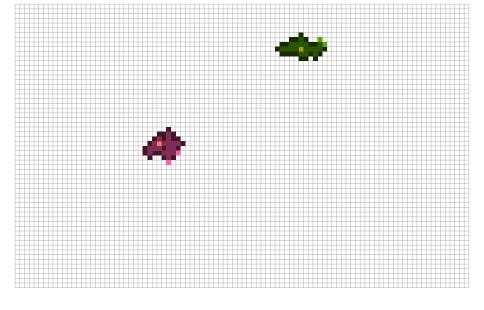


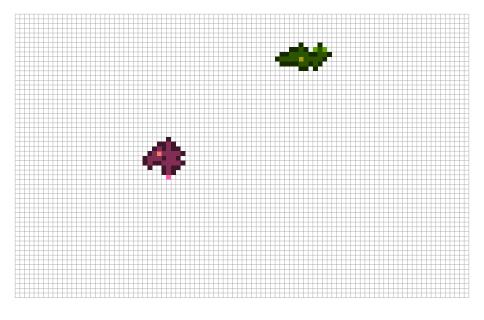


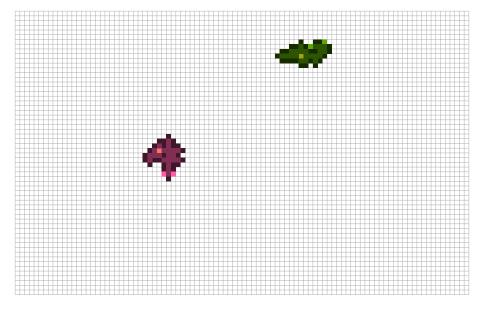


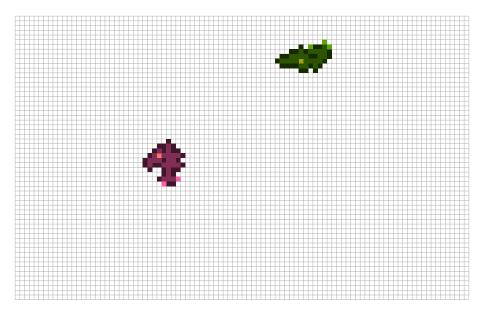


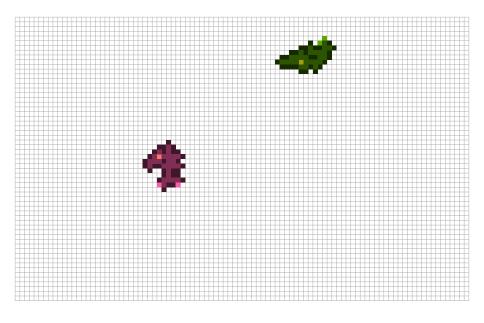


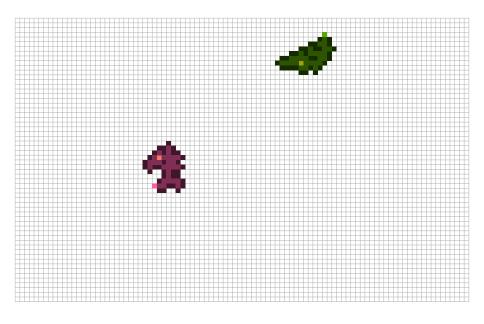


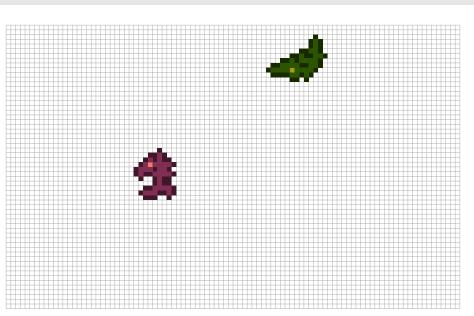










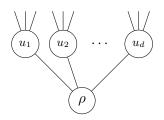


We need to calculate $\iota(U,\rho)$,

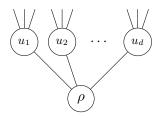
We need to calculate $\iota(U,\rho)$, but even $\iota(\mathbb{Z}^2)$ is still unknown...

We need to calculate $\iota(U,\rho)$, but even $\iota(\mathbb{Z}^2)$ is still unknown... Let us therefore restrict ourselves to *locally tree-like* graph sequences, i.e., graph sequences for which (U,ρ) is almost surely a tree.

We need to calculate $\iota(U,\rho)$, but even $\iota(\mathbb{Z}^2)$ is still unknown... Let us therefore restrict ourselves to *locally tree-like* graph sequences, i.e., graph sequences for which (U,ρ) is almost surely a tree.



We need to calculate $\iota(U,\rho)$, but even $\iota(\mathbb{Z}^2)$ is still unknown... Let us therefore restrict ourselves to *locally tree-like* graph sequences, i.e., graph sequences for which (U,ρ) is almost surely a tree.



Assuming the children of ρ are roots to independent subtrees, and conditioning on the label of ρ , children of the *past* are roots to independent processes.

Let (U, ρ) be a single-type branching process.

Let (U,ρ) be a single-type branching process.

$$y(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x)$$

Let (U, ρ) be a single-type branching process.

$$y(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x)$$
$$= x \cdot \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} < x)$$
$$= \int_{0}^{x} \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = z) dz$$

Let (U, ρ) be a single-type branching process.

$$y(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x)$$

$$= x \cdot \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} < x)$$

$$= \int_{0}^{x} \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = z) dz$$

$$y'(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = x)$$

Let (U, ρ) be a single-type branching process.

$$y(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x)$$

$$= x \cdot \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} < x)$$

$$= \int_{0}^{x} \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = z) dz$$

$$y'(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = x)$$

Thus, if y is a unique solution of

$$y'(x) = \sum_{\ell \in \mathbb{N}} \mathbb{P}(\xi[\langle x] = \ell) \left(1 - \frac{y(x)}{x}\right)^{\ell}, \quad y(0) = 0,$$

then, $\iota(U,\rho)=y(1)$.

Let (U,ρ) be a single-type branching process.

$$y(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x)$$

$$= x \cdot \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} < x)$$

$$= \int_{0}^{x} \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = z) dz$$

$$y'(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = x)$$

Thus, if y is a unique solution of

$$y'(x) = \sum_{\ell \in \mathbb{N}} \mathbb{P}(\xi[< x] = \ell) \left(1 - \frac{y(x)}{x}\right)^{\ell}, \quad y(0) = 0,$$

then, $\iota(U,\rho)=y(1)$.

Let (U, ρ) be a (simple) multitype branching process.

$$y_{k}(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \land \sigma_{\rho} < x \mid \tau = k)$$

$$= x \cdot \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} < x, \tau = k)$$

$$= \int_{0}^{x} \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = z, \tau = k) dz$$

$$y'_{k}(x) = \mathbb{P}(\rho \in \mathbf{I}(U[\mathcal{P}_{\rho}]) \mid \sigma_{\rho} = x, \tau = k)$$

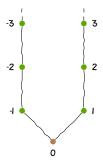
Thus, if y is a unique solution of

$$y_k'(x) = \sum_{\ell \in \mathbb{N}^T} \prod_{j \in \mathcal{T}} \mathbb{P}\left(\xi^{k \to j}[\langle x] = \ell_j\right) \left(1 - \frac{y_j(x)}{x}\right)^{\ell_j}, \qquad y_k(0) = 0,$$

then, $\iota(U,\rho) = \mathbb{E}[y_k(1)].$

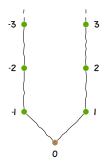
 P_n and C_n converge locally to \mathbb{Z} , which can be thought of as a 2-type branching process.

 P_n and C_n converge locally to \mathbb{Z} , which can be thought of as a 2-type branching process.



 P_n and C_n converge locally to \mathbb{Z} , which can be thought of as a 2-type branching process.

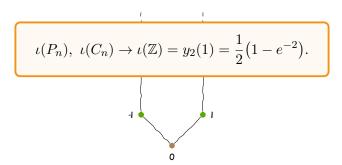
$$y'_b(x) = 1 - y_b(x)$$
 $\Longrightarrow y_b(x) = 1 - e^{-x},$
 $y'_r(x) = (1 - y_b(x))^2 = e^{-2x}$ $\Longrightarrow y_r(x) = \frac{1}{2} (1 - e^{-2x}).$



 P_n and C_n converge locally to \mathbb{Z} , which can be thought of as a 2-type branching process.

$$y'_b(x) = 1 - y_b(x)$$
 $\Longrightarrow y_b(x) = 1 - e^{-x},$
 $y'_r(x) = (1 - y_b(x))^2 = e^{-2x}$ $\Longrightarrow y_r(x) = \frac{1}{2} (1 - e^{-2x}).$

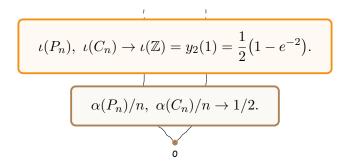
Thus



 P_n and C_n converge locally to \mathbb{Z} , which can be thought of as a 2-type branching process.

$$y'_b(x) = 1 - y_b(x)$$
 $\Longrightarrow y_b(x) = 1 - e^{-x},$
 $y'_r(x) = (1 - y_b(x))^2 = e^{-2x}$ $\Longrightarrow y_r(x) = \frac{1}{2} (1 - e^{-2x}).$

Thus



Application: binomial random graphs

Easy fact: G(n,d/n) converges locally to the $\ensuremath{\operatorname{Pois}}(d)$ branching process.

$$y'(x) = \sum_{\ell=0}^{\infty} \frac{(dx)^{\ell}}{e^{dx}\ell!} \left(1 - \frac{y(x)}{x}\right)^{\ell} = e^{-dy(x)}.$$

hence $y(x) = \log(1 + dx)/d$.

Application: binomial random graphs

Easy fact: ${\cal G}(n,d/n)$ converges locally to the ${\rm Pois}(d)$ branching process.

$$y'(x) = \sum_{\ell=0}^{\infty} \frac{(dx)^{\ell}}{e^{dx}\ell!} \left(1 - \frac{y(x)}{x}\right)^{\ell} = e^{-dy(x)}.$$

hence $y(x) = \log(1 + dx)/d$. Thus

$$\iota(G(n,d/n)) \to \iota(\mathcal{T}_d) = y(1) = \frac{\log(1+d)}{d}.$$

Application: binomial random graphs

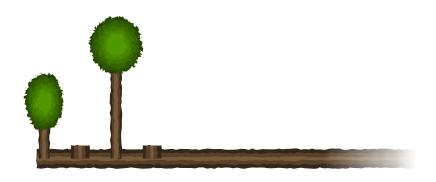
Easy fact: ${\cal G}(n,d/n)$ converges locally to the ${\rm Pois}(d)$ branching process.

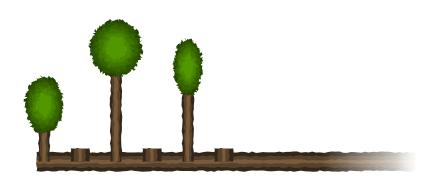
$$y'(x) = \sum_{\ell=0}^{\infty} \frac{(dx)^{\ell}}{e^{dx}\ell!} \left(1 - \frac{y(x)}{x}\right)^{\ell} = e^{-dy(x)}.$$

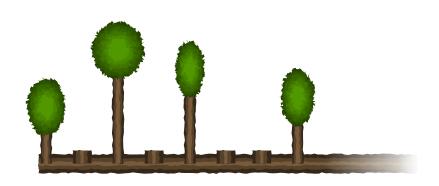
hence $y(x) = \log(1 + dx)/d$. Thus

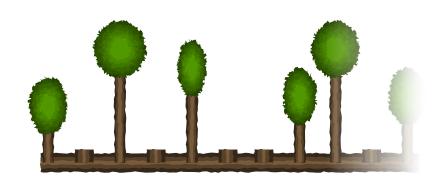
$$\iota(G(n,d/n)) \to \iota(\mathcal{T}_d) = y(1) = \frac{\log(1+d)}{d}.$$

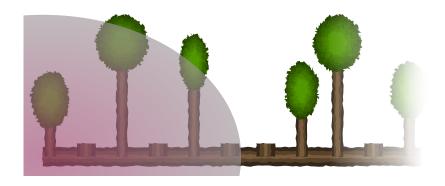
$$\alpha(G(n, d/n))/n \to 2\log d/d \cdot (1 + o_d(1)).$$











Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$y_{\mathsf{t}}(x) = \log(1+x),$$

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$y_{\mathsf{t}}(x) = \log(1+x),$$

and

$$y'_{s}(x) = (1 - y_{s}(x))y'_{t}(x) = \frac{1 - y_{s}(x)}{1 + x},$$

hence $y_s(x) = 1 - (1+x)^{-1}$, and we get

$$\iota(T_n) o \iota(\hat{\mathcal{T}}_1) = y_{\scriptscriptstyle{\mathsf{S}}}(1) = rac{1}{2}.$$

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$y_{\mathsf{t}}(x) = \log(1+x),$$

and

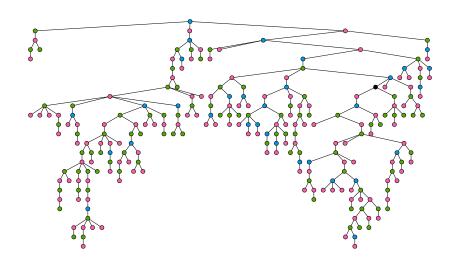
$$y'_{s}(x) = (1 - y_{s}(x))y'_{t}(x) = \frac{1 - y_{s}(x)}{1 + x},$$

hence $y_s(x) = 1 - (1+x)^{-1}$, and we get

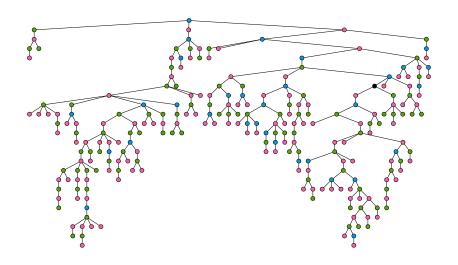
$$\iota(T_n) \to \iota(\hat{\mathcal{T}}_1) = y_{\mathrm{S}}(1) = \frac{1}{2}.$$

$$\alpha(T_n)/n \to W_0(1) \approx 0.56714...$$

Simulations don't lie

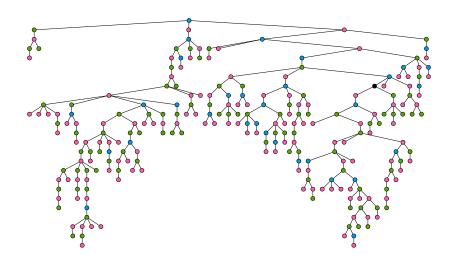


Simulations don't lie



red: 125 (50%), green: 92 (\approx 37%), blue: 32 (\approx 13%), black: 1

Simulations don't lie (but I do)



red: 125 (50%), green: 92 (\approx 37%), blue: 32 (\approx 13%), black: 1

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$

McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$

Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$

Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$)

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$ Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$)

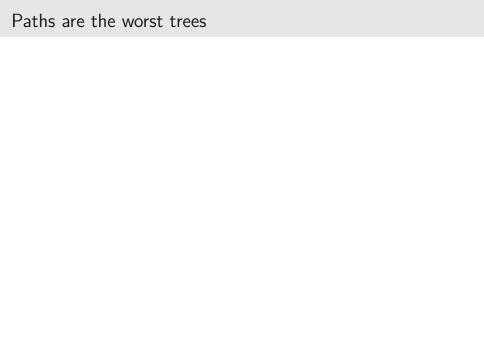
Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ \checkmark Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$ Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$)

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ \checkmark Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$ \checkmark Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$)

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ \checkmark Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2}\big(1-(d-1)^{-2/(d-2)}\big)$ \checkmark Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$)

Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ \checkmark Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$ \checkmark Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$) \checkmark KMMS '20 $\iota(T_n) \to \frac{1}{2}$

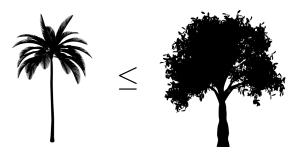
Flory '39, Page '59
$$\iota(P_n) \to \frac{1}{2}(1-e^{-2})$$
 \checkmark McDiarmid '84 $\iota(G(n,d/n)) \to \log(1+d)/d$ \checkmark Wormald '95 $\iota(\mathcal{G}_{n,d}) \to \frac{1}{2} \left(1-(d-1)^{-2/(d-2)}\right)$ \checkmark Lauer–Wormald '07 $(d$ -regular graphs with girth $\to \infty$) \checkmark KMMS '20 $\iota(T_n) \to \frac{1}{2}$ (same for functional digraphs)



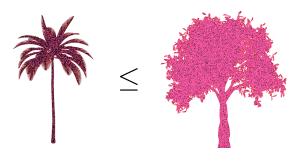
•
$$\iota(P_n) \to \frac{1}{2} (1 - e^{-2}) \approx 0.43233...$$

- $\iota(P_n) \to \frac{1}{2} (1 e^{-2}) \approx 0.43233...$
- $\iota(S_n) \to 1$

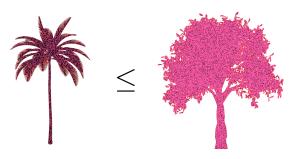
- $\iota(P_n) \to \frac{1}{2} (1 e^{-2}) \approx 0.43233...$
- $\iota(S_n) \to 1$



- $\iota(P_n) \to \frac{1}{2} (1 e^{-2}) \approx 0.43233...$
- $\iota(S_n) \to 1$



- $\iota(P_n) \to \frac{1}{2} (1 e^{-2}) \approx 0.43233...$
- $\iota(S_n) \to 1$



Theorem (Krivelevich, Mészáros, M., Shikhelman '20) If T is a tree on n vertices, then $\mathbb{E}[\iota(P_n)] \leq \mathbb{E}[\iota(T)]$.

What's next?

- Graph sequences that are not locally tree-like
- Better/other local rules
- Other colours

Thank You!

