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Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence
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General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).

We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.
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Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.
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Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

Examples
Pn, Cn

loc−→ Z

[n]d
loc−→ Zd

G(n, d/n)
loc−→ Td, a Galton–Watson Pois(d) tree

Gn,d
loc−→ the d-regular tree

Uniform random tree Tn
loc−→ T̂1, a size-biased GW Pois(1) tree

Finite d-ary balanced tree loc−→ the canopy tree



Convergence of the greedy independence ratio

Say that Gn has subfactorial path growth if the expected number of paths
from a typical vertex is subfactorial in their length.

(bounded degree ⊊ subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
Suppose Gn has subfactorial path growth.
If Gn

loc−→ (U, ρ) then ι(Gn) → ι(U, ρ) a.a.s.

P(ρ is red)
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Locally tree-like

We need to calculate ι(U, ρ),

but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.



Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...

Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.



Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.



Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.



Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.



Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)
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Systems of ordinary differential equations

Let (U, ρ) be a (simple) multitype branching process.

yk(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x | τ = k)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x, τ = k)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z, τ = k)dz

y′k(x) = P(ρ ∈ I(U [Pρ]) | σρ = x, τ = k)

Thus, if y is a unique solution of

y′k(x) =
∑
ℓ∈NT

∏
j∈T

P
(
ξk→j [< x] = ℓj

)(
1− yj(x)

x

)ℓj

, yk(0) = 0,

then, ι(U, ρ) = E[yk(1)].



Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.
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Application: binomial random graphs

Easy fact: G(n, d/n) converges locally to the Pois(d) branching process.

y′(x) =

∞∑
ℓ=0

(dx)ℓ

edxℓ!

(
1− y(x)

x

)ℓ

= e−dy(x).

hence y(x) = log(1 + dx)/d.

Thus

ι(G(n, d/n)) → ι(Td) = y(1) =
log(1 + d)

d
.

α(G(n, d/n))/n → 2 log d/d · (1 + od(1)).
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Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on
one of the hanging trees. We have already seen

yt(x) = log(1 + x),

and
y′s(x) = (1− ys(x))y

′
t(x) =

1− ys(x)

1 + x
,

hence ys(x) = 1− (1 + x)−1, and we get

ι(Tn) → ι(T̂1) = ys(1) =
1

2
.

α(Tn)/n → W0(1) ≈ 0.56714...
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Simulations don’t lie (but I do)
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Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

✓

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)

✓

Lauer–Wormald ’07 (d-regular graphs with girth → ∞)

✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X
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Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T )].



What’s next?

Graph sequences that are not locally tree-like
Better/other local rules
Other colours

???



Thank You!


