UNIVERSITY OF TWENTE.

Probabilistic Analysis of Optimization Problems on Sparse Random Shortest Path Metrics

Stefan Klootwijk Joint work with Bodo Manthey

September 2020

Optimization in practice

- Large scale optimization problems are hard to solve within reasonable time.
- Often heuristics are used to provide (non-optimal) solutions.
- Big gap between theoretical and actual performance!

Optimization in practice

- Large scale optimization problems are hard to solve within reasonable time.
- Often heuristics are used to provide (non-optimal) solutions.
- Big gap between theoretical and actual performance!
- Some examples of worst case approximation ratios:
 - ► Greedy for Minimum-weight Perfect Matching: O(n^{log₂(3/2)}) ≈ O(n^{0.58})
 - ▶ Nearest Neighbor (greedy) for TSP: $O(\log(n))$
 - 2-Opt (local search) for TSP: $O(\sqrt{n})$
 - etc.

UNIVERSITY OF TWENTE.

Optimization in practice

- Large scale optimization problems are hard to solve within reasonable time.
- Often heuristics are used to provide (non-optimal) solutions.
- ► Big gap between theoretical and actual performance!
- Probabilistic analysis and other 'beyond worst-case analysis' methods are nowadays used for analysis of the performance of these heuristics.
- ▶ Interested in $\mathbb{E}\left[\frac{ALG}{OPT}\right]$ (instead of $\frac{\mathbb{E}[ALG]}{\mathbb{E}[OPT]}$).

Random (Metric) Spaces

random in $[0,1]^2$

independent edge lengths

Framework for Random Metric Spaces

- ► We look at different models for random metric spaces.
- We study them and analyse the performance of heuristics on them.
- ► Goal:
 - help choosing the right heuristic for a given problem;
 - ► facilitate the design of better heuristics.

Random Shortest Path Metrics

- Graph G = (V, E) (on *n* vertices)
- ▶ Random 'edge weights' w(e) for all edges $e \in E$
- ► Distances d(u, v) given by the shortest u, v-path w.r.t. weights, for all vertices u, v ∈ V
 - d(v, v) = 0 for all $v \in V$
 - Symmetry: d(u, v) = d(v, u) for all $u, v \in V$
 - ► Triangle inequality: $d(u, v) \le d(u, s) + d(s, v)$ for all $u, s, v \in V$

d	А	В	С	D	Е
Α	0				
В		0			
C			0		
D				0	
E					0

d	А	В	С	D	Е
Α	0				
В		0			
C			0		
D				0	
E					0

d	А	В	С	D	Е
Α	0	20			
В		0			
C			0		
D				0	
E					0

d	А	В	С	D	Е
Α	0	20	3		
В		0			
C			0		
D				0	
E					0

UNIVERSITY OF TWENTE.

d	Α	В	С	D	Е
Α	0	20	3		
В		0			
C			0		
D				0	
E					0

d	А	В	С	D	Е
A	0	20	3	13	
В		0			
C			0		
D				0	
E					0

d	Α	В	С	D	Е
Α	0	20	3	13	
В		0			
C			0		
D				0	
E					0

d	А	В	С	D	Е
Α	0	20	3	13	11
В		0			
C			0		
D				0	
E					0

UNIVERSITY OF TWENTE.

d	A	В	С	D	Е
Α	0	20	3	13	11
В	20	0	17	7	9
C	3	17	0	10	8
D	13	7	10	0	2
E	11	9	8	2	0

d	A	В	С	D	Е
A	0	20	3	13	11
В	20	0	17	7	9
C	3	17	0	10	8
D	13	7	10	0	2
E	11	9	8	2	0

Edge weights from (standard)exponential distribution

 $\Rightarrow \text{ `memorylessness property':} \\ \mathbb{P}(X > s + t \mid X > t) = \mathbb{P}(X > s) \text{ for all } s, t \ge 0. \\ \Rightarrow \text{ `minimum property':} \\ X_1, \dots, X_k \sim \operatorname{Exp}(1) \quad \Rightarrow \quad \min(X_i) \sim \operatorname{Exp}(k). \end{aligned}$

UNIVERSITY OF TWENTE.

Random Shortest Path Metrics

Random Shortest Path Metrics (RSPM)

- Graph G = (V, E) (on *n* vertices)
- ▶ Random 'edge weights' w(e) for all edges $e \in E$
- ► Distances d(u, v) given by the shortest u, v-path w.r.t. weights, for all vertices u, v ∈ V
- Also known as First Passage Percolation (FPP)
- A widely studied model, but (until recently) not used for probabilistic analysis

Related results

 Probabilistic analysis using RSPM on complete graphs proposed by Karp & Steele (1985)

Theorem (Bringmann, Engels, Manthey, Rao 2013)

On RSPM generated from *complete graphs*, the following heuristics have expected approximation ratio O(1):

- Greedy for Minimum-Distance Perfect Matching;
- Nearest Neighbor Heuristic for TSP;
- ▶ Insertion Heuristics for TSP (for any insertion rule *R*).

Also a 'trivial' $O(\log(n))$ approximation ratio for 2-opt for TSP, open question whether this can be improved.

Related results

Recent efforts to adapt the model to a more realistic one.

Theorem (K., Manthey, Visser 2019)

On RSPM generated from (dense) Erdős–Rényi random graphs, the following heuristics have expected approximation ratio O(1):

- Greedy for Minimum-Distance Perfect Matching;
- Nearest Neighbor Heuristic for TSP;
- ▶ Insertion Heuristics for TSP (for any insertion rule *R*).

Related results

Recent efforts to adapt the model to a more realistic one.

Theorem (K., Manthey, Visser 2019)

On RSPM generated from (dense) Erdős–Rényi random graphs, the following heuristics have expected approximation ratio O(1):

- Greedy for Minimum-Distance Perfect Matching;
- Nearest Neighbor Heuristic for TSP;
- ▶ Insertion Heuristics for TSP (for any insertion rule *R*).

Next step: RSPM generated from sparse graphs.

► Start from grid graphs, because most studied in FPP.

Main Result

Theorem (K., Manthey 2020)

On RSPM generated from *square grid graphs*, the following heuristics have expected approximation ratio O(1):

- Greedy for Minimum-Distance Perfect Matching;*
- Nearest Neighbor Heuristic for TSP;*
- ▶ Insertion Heuristics for TSP (for any insertion rule *R*);*
- ▶ 2-opt for TSP (for any choice of the improvements).[†]
 - * Also for RSPM generated from a certain wide class of sparse graphs.
 - † Also for RSPM generated from arbitrary sparse graphs.

Main Result

Theorem (K., Manthey 2020)

On RSPM generated from *square grid graphs*, the following heuristics have expected approximation ratio O(1):

- Greedy for Minimum-Distance Perfect Matching;*
- Nearest Neighbor Heuristic for TSP;*
- ▶ Insertion Heuristics for TSP (for any insertion rule *R*);*
- ▶ 2-opt for TSP (for any choice of the improvements).[†]
- Remainder of this presentation:
 - ► Idea for the 2-opt result;
 - Quick sketch of the 'road' to the greedy matching result.

Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary 2-optimal solution. Then, every edge of G is used at most twice (once per direction).

Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary 2-optimal solution. Then, every edge of G is used at most twice (once per direction).

- Any 2-optimal solution has length at most twice the sum of all edge weights, so 𝔼[WLO] ≤ O(n).
- ► Any TSP solution uses at least n-1 different edge weights, so $\mathbb{E}[TSP] \ge \Omega(n)$.

Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary 2-optimal solution. Then, every edge of G is used at most twice (once per direction).

- Any 2-optimal solution has length at most twice the sum of all edge weights, so 𝔼[WLO] ≤ O(n).
- Any TSP solution uses at least n − 1 different edge weights, so E[TSP] ≥ Ω(n).

$$\blacktriangleright \mathbb{E}\left[\frac{WLO}{TSP}\right] = O(1)$$

Theorem (Davis, Prieditis 1993)

Let G be a complete graph and let $\tau_k(v)$ denote the distance to the k-th closest vertex from v. Then, for any k and v,

$$\tau_k(\mathbf{v}) \sim \sum_{i=1}^{k-1} \operatorname{Exp}(i \cdot (n-i)).$$

Theorem (Davis, Prieditis 1993)

Let G be a complete graph and let $\tau_k(v)$ denote the distance to the k-th closest vertex from v. Then, for any k and v,

$$\tau_k(v) \sim \sum_{i=1}^{k-1} \operatorname{Exp}(i \cdot (n-i)).$$

Generalization

Suppose that $|\delta(U)| \ge f(|U|)$ for some function $f(\cdot)$ and all $U \subseteq V$. Then, for any $k \in [n]$ and any $v \in V$,

$$\tau_k(v) \precsim \sum_{i=1}^{k-1} \operatorname{Exp}(f(i)).$$

UNIVERSITY OF TWENTE.

Theorem (Bollobás, Leader 1991)

Let G be a finite square grid graph on $n = N^2$ vertices. Then, for any $U \subseteq V$:

$$|\delta(U)| \ge \begin{cases} 2\sqrt{|U|} & \text{if } |U| \le n/4, \\ \sqrt{n} & \text{if } n/4 \le |U| \le 3n/4, \\ 2\sqrt{n-|U|} & \text{if } |U| \ge 3n/4. \end{cases}$$

Theorem (Bollobás, Leader 1991)

Let G be a finite square grid graph on $n = N^2$ vertices. Then, for any $U \subseteq V$:

$$|\delta(U)| \ge \begin{cases} 2\sqrt{|U|} & \text{if } |U| \le n/4, \\ \sqrt{n} & \text{if } n/4 \le |U| \le 3n/4, \\ 2\sqrt{n-|U|} & \text{if } |U| \ge 3n/4. \end{cases}$$

Remark

All results that follow can be generalized to any family of graphs that satisfies $|\delta(U)| \ge \Omega(|U|^{\varepsilon})$ for all $U \subseteq V$ with $|U| \le cn$ (where $\varepsilon, c \in (0, 1)$ are constants).

Theorem (Bollobás, Leader 1991)

Let G be a finite square grid graph on $n = N^2$ vertices. Then, for any $U \subseteq V$:

$$|\delta(U)| \ge \begin{cases} 2\sqrt{|U|} & \text{if } |U| \le n/4, \\ \sqrt{n} & \text{if } n/4 \le |U| \le 3n/4, \\ 2\sqrt{n-|U|} & \text{if } |U| \ge 3n/4. \end{cases}$$

Corollary

Let $\tau_k(v)$ denote the distance to the *k*-th closest vertex from v. Then, for any $k \leq n/4$ and any $v \in V$,

$$\tau_k(\mathbf{v}) \precsim \sum_{i=1}^{k-1} \operatorname{Exp}(2\sqrt{i}).$$

UNIVERSITY OF TWENTE.

Random Shortest Path Metrics

RSPM (general graphs) - 'toolbox'

Theorem (Clustering)

Let $\Delta > 0$. If we partition the instance into clusters of diameter at most 4Δ , then the expected number of clusters needed is $O(1 + n/\Delta^2)$.

Lemma (Tail bound for Δ_{\max})

Let $\Delta_{\max} := \max_{u,v} d(u,v)$. Then for $x \ge 9\sqrt{n}$ we have

$$\mathbb{P}(\Delta_{\max} \ge x) = ne^{-x}.$$

Lemma

Greedy outputs a matching with expected costs at most O(n).

Theorem

Greedy has an expected approximation ratio of O(1) on RSPM generated from grid graphs.

UNIVERSITY OF TWENTE.

Random Shortest Path Metrics

UNIVERSITY OF TWENTE.

Random Shortest Path Metrics

16

• $\mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$

- $\blacktriangleright \mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$
- A partitioning in clusters of diameter ≤ 4(i − 1) needs ≤ O(1 + n/(i − 1)²) clusters.

UNIVERSITY OF TWENTE.

 X_2

 X_1

Proof idea

 $\blacktriangleright \mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$

• • •

 $\frac{Y_3}{Y_2}$

 $< O(1 + n/(i-1)^2)$ clusters.

unmatched vertices remain.

 $d \in (0, 4]$ $d \in (4, 8]$ $d \in (8, 12]$ $d \in (4(i-1), 4i]$

 X_3

• A partitioning in clusters of diameter $\leq 4(i-1)$ needs

• When 'Greedy' reaches bin *i*, at most $O(1 + n/(i-1)^2)$

 $\frac{X_i}{Y_i}$

- $\blacktriangleright \mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$
- ► A partitioning in clusters of diameter $\leq 4(i-1)$ needs $\leq O(1 + n/(i-1)^2)$ clusters.
- ▶ When 'Greedy' reaches bin *i*, at most $O(1 + n/(i 1)^2)$ unmatched vertices remain.
- So $\mathbb{E}[Y_i] \le O(1 + n/(i-1)^2)$ for i > 1.

- $\blacktriangleright \mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$
- ► A partitioning in clusters of diameter $\leq 4(i-1)$ needs $\leq O(1 + n/(i-1)^2)$ clusters.
- ▶ When 'Greedy' reaches bin *i*, at most $O(1 + n/(i 1)^2)$ unmatched vertices remain.
- So $\mathbb{E}[Y_i] \le O(1 + n/(i-1)^2)$ for i > 1.
- ► For 'large' *i* we have $\mathbb{E}[Y_i] \leq n \cdot \mathbb{P}(\Delta_{\max} \geq 4(i-1)) \leq n^2 e^{-4(i-1)}.$

- $\blacktriangleright \mathbb{E}[GR] \leq \sum_{i=1}^{\infty} 4i \cdot \mathbb{E}[X_i] = \sum_{i=1}^{\infty} 4 \cdot \mathbb{E}[Y_i].$
- ► A partitioning in clusters of diameter $\leq 4(i-1)$ needs $\leq O(1 + n/(i-1)^2)$ clusters.
- ▶ When 'Greedy' reaches bin *i*, at most $O(1 + n/(i 1)^2)$ unmatched vertices remain.
- So $\mathbb{E}[Y_i] \le O(1 + n/(i-1)^2)$ for i > 1.
- ► For 'large' *i* we have $\mathbb{E}[Y_i] \le n \cdot \mathbb{P}(\Delta_{\max} \ge 4(i-1)) \le n^2 e^{-4(i-1)}.$
- Summing over all *i* yields $\mathbb{E}[GR] \leq O(n)$.

Open problems

- ► RSPM on arbitrary sparse graphs?
- Only using a subset of the vertices?
- 'Hybrid heuristics'?