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Optimization in practice

I Large scale optimization problems are hard to solve
within reasonable time.

I Often heuristics are used to provide (non-optimal)
solutions.

I Big gap between theoretical and actual performance!

Some examples of worst case approximation ratios:

Greedy for Minimum-weight Perfect Matching:
O(nlog2(3/2)) ≈ O(n0.58)

Nearest Neighbor (greedy) for TSP: O(log(n))

2-Opt (local search) for TSP: O(
√
n)

etc.
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Optimization in practice

I Large scale optimization problems are hard to solve
within reasonable time.

I Often heuristics are used to provide (non-optimal)
solutions.

I Big gap between theoretical and actual performance!

I Probabilistic analysis and other ‘beyond worst-case
analysis’ methods are nowadays used for analysis of the
performance of these heuristics.

I Interested in E
[
ALG
OPT

]
(instead of E[ALG ]

E[OPT ]).
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Random (Metric) Spaces
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Framework for Random Metric Spaces

I We look at different models for random metric spaces.

I We study them and analyse the performance of heuristics
on them.

I Goal:
I help choosing the right heuristic for a given problem;
I facilitate the design of better heuristics.
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Random Shortest Path Metrics

I Graph G = (V ,E ) (on n vertices)

I Random ‘edge weights’ w(e) for all edges e ∈ E

I Distances d(u, v) given by the shortest u, v -path w.r.t.
weights, for all vertices u, v ∈ V

I d(v , v) = 0 for all v ∈ V

I Symmetry: d(u, v) = d(v , u) for all u, v ∈ V

I Triangle inequality: d(u, v) ≤ d(u, s) + d(s, v) for all
u, s, v ∈ V
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Random Shortest Path Metrics – Example
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I Edge weights from (standard)exponential distribution⇒ ‘memorylessness property’:
P(X > s + t | X > t) = P(X > s) for all s, t ≥ 0.⇒ ‘minimum property’:
X1, . . . ,Xk ∼ Exp(1) ⇒ min(Xi ) ∼ Exp(k).
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Random Shortest Path Metrics (RSPM)

I Graph G = (V ,E ) (on n vertices)

I Random ‘edge weights’ w(e) for all edges e ∈ E

I Distances d(u, v) given by the shortest u, v -path w.r.t.
weights, for all vertices u, v ∈ V

I Also known as First Passage Percolation (FPP)

I A widely studied model, but (until recently) not used for
probabilistic analysis
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Related results

I Probabilistic analysis using RSPM on complete graphs
proposed by Karp & Steele (1985)

Theorem (Bringmann, Engels, Manthey, Rao 2013)

On RSPM generated from complete graphs, the following
heuristics have expected approximation ratio O(1):

I Greedy for Minimum-Distance Perfect Matching;

I Nearest Neighbor Heuristic for TSP;

I Insertion Heuristics for TSP (for any insertion rule R).

Also a ‘trivial’ O(log(n)) approximation ratio for 2-opt for
TSP, open question whether this can be improved.
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Related results

I Recent efforts to adapt the model to a more realistic one.

Theorem (K., Manthey, Visser 2019)

On RSPM generated from (dense) Erdős–Rényi random
graphs, the following heuristics have expected approximation
ratio O(1):

I Greedy for Minimum-Distance Perfect Matching;

I Nearest Neighbor Heuristic for TSP;

I Insertion Heuristics for TSP (for any insertion rule R).

Next step: RSPM generated from sparse graphs.

I Start from grid graphs, because most studied in FPP.
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Main Result

Theorem (K., Manthey 2020)

On RSPM generated from square grid graphs, the following
heuristics have expected approximation ratio O(1):

I Greedy for Minimum-Distance Perfect Matching;∗

I Nearest Neighbor Heuristic for TSP;∗

I Insertion Heuristics for TSP (for any insertion rule R);∗

I 2-opt for TSP (for any choice of the improvements).†

∗ Also for RSPM generated from a certain wide class of
sparse graphs.

† Also for RSPM generated from arbitrary sparse graphs.
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Main Result

Theorem (K., Manthey 2020)

On RSPM generated from square grid graphs, the following
heuristics have expected approximation ratio O(1):

I Greedy for Minimum-Distance Perfect Matching;∗

I Nearest Neighbor Heuristic for TSP;∗

I Insertion Heuristics for TSP (for any insertion rule R);∗

I 2-opt for TSP (for any choice of the improvements).†

I Remainder of this presentation:

I Idea for the 2-opt result;

I Quick sketch of the ‘road’ to the greedy matching result.
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Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary
2-optimal solution. Then, every edge of G is used at most
twice (once per direction).

2-exchange

=⇒
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Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary
2-optimal solution. Then, every edge of G is used at most
twice (once per direction).

I Any 2-optimal solution has length at most twice the sum
of all edge weights, so E[WLO] ≤ O(n).

I Any TSP solution uses at least n − 1 different edge
weights, so E[TSP] ≥ Ω(n).
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Idea for the 2-opt result

Observation

Consider the shortest paths corresponding to an arbitrary
2-optimal solution. Then, every edge of G is used at most
twice (once per direction).

I Any 2-optimal solution has length at most twice the sum
of all edge weights, so E[WLO] ≤ O(n).

I Any TSP solution uses at least n − 1 different edge
weights, so E[TSP] ≥ Ω(n).

I E
[
WLO

TSP

]
= O(1)
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RSPM (general graphs) – Structural properties

Theorem (Davis, Prieditis 1993)

Let G be a complete graph and let τk(v) denote the distance
to the k-th closest vertex from v . Then, for any k and v ,

τk(v) ∼
k−1∑
i=1

Exp(i · (n − i)).

Generalization

Suppose that |δ(U)| ≥ f (|U |) for some function f (·) and all
U ⊆ V . Then, for any k ∈ [n] and any v ∈ V ,

τk(v) -
k−1∑
i=1

Exp(f (i)).
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RSPM (grid graphs) – cut sizes

Theorem (Bollobás, Leader 1991)

Let G be a finite square grid graph on n = N2 vertices. Then,
for any U ⊆ V :

|δ(U)| ≥


2
√

|U | if |U | ≤ n/4,
√
n if n/4 ≤ |U | ≤ 3n/4,

2
√
n − |U | if |U | ≥ 3n/4.
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Let G be a finite square grid graph on n = N2 vertices. Then,
for any U ⊆ V :

|δ(U)| ≥


2
√

|U | if |U | ≤ n/4,
√
n if n/4 ≤ |U | ≤ 3n/4,

2
√
n − |U | if |U | ≥ 3n/4.

Remark

All results that follow can be generalized to any family of
graphs that satisfies |δ(U)| ≥ Ω(|U |ε) for all U ⊆ V with
|U | ≤ cn (where ε, c ∈ (0, 1) are constants).
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RSPM (grid graphs) – cut sizes

Theorem (Bollobás, Leader 1991)

Let G be a finite square grid graph on n = N2 vertices. Then,
for any U ⊆ V :

|δ(U)| ≥


2
√

|U | if |U | ≤ n/4,
√
n if n/4 ≤ |U | ≤ 3n/4,

2
√
n − |U | if |U | ≥ 3n/4.

Corollary

Let τk(v) denote the distance to the k-th closest vertex from
v . Then, for any k ≤ n/4 and any v ∈ V ,

τk(v) -
k−1∑
i=1

Exp(2
√
i).
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RSPM (general graphs) – ‘toolbox’

Theorem (Clustering)

Let ∆ > 0. If we partition the instance into clusters of
diameter at most 4∆, then the expected number of clusters
needed is O(1 + n/∆2).

Lemma (Tail bound for ∆max)

Let ∆max := maxu,v d(u, v). Then for x ≥ 9
√
n we have

P(∆max ≥ x) = ne−x .
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Greedy Matching

Lemma

Greedy outputs a matching with expected costs at most O(n).

Theorem

Greedy has an expected approximation ratio of O(1) on
RSPM generated from grid graphs.
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Proof idea

· · · · · ·
d ∈ (0, 4] d ∈ (4, 8] d ∈ (8, 12] d ∈ (4(i − 1), 4i ]

X1 X2 X3 Xi

Yi

Y3

Y2

Y1

I E[GR] ≤
∑∞

i=1 4i · E[Xi ] =
∑∞

i=1 4 · E[Yi ].

I Y1 = n/2.
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Proof idea

I E[GR] ≤
∑∞

i=1 4i · E[Xi ] =
∑∞

i=1 4 · E[Yi ].

A partitioning in clusters of diameter ≤ 4(i − 1) needs
≤ O(1 + n/(i − 1)2) clusters.

When ‘Greedy’ reaches bin i , at most O(1 + n/(i − 1)2)
unmatched vertices remain.

So E[Yi ] ≤ O(1 + n/(i − 1)2) for i > 1.
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I So E[Yi ] ≤ O(1 + n/(i − 1)2) for i > 1.

I For ‘large’ i we have
E[Yi ] ≤ n · P(∆max ≥ 4(i − 1)) ≤ n2e−4(i−1).

Summing over all i yields E[GR] ≤ O(n).
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Open problems

I RSPM on arbitrary sparse graphs?

I Only using a subset of the vertices?

I ‘Hybrid heuristics’?

I ...
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