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Dynamic networks
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Duplication-divergence model

Model definition: starting from a certain graph G on t0 vertices we add
vertices one by one in the following way:

1 pick any vertex v uniformly at random from all t vertices of a
current graph,

2 add a new vertex u to G ,

3 attach u to any vertex connected to v – independently, with
probability p (0 ≤ p ≤ 1).

We call this model duplication-divergence and denote by DD(t, p).

This model is supposed to be well-suited to many types of biological net-
works, e.g. protein-protein networks.
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Figure: Example graph growth for p = 0.8.
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Previous work

Let

f (k) = lim
n→∞

fn(k) = lim
n→∞

1
n
E|{v ∈ V (Gn) : degn(v) = k}|.

1 Hermann, Pfaffelhuber, 2014: for DD(t, p) with p < 1 we have
f (k) = 0 for all k 6= 0. Moreover, when p < 0.567 . . . it holds that
f (0) = 1, otherwise f (0) = c ∈ (0, 1),

2 Li et al., 2013: for DD(t, p) with 0 < p < 1
2 it holds that

fn(1) = Ω(ln t/t).

Other work includes studying average degree (Bebek et al., 2006), tri-
angles (Hermann, Pfaffelhuber, 2014), open triangles (Sreedharan et al.,
2020), maximum degree (Frieze et al., 2020), automorphisms (Turowski
et al., 2019) in this model.
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Jordan’s result

Let us focus on the connected component of the graph:

an(k) =
fk(n)∑∞
i=1 fn(i)

=
fn(k)

1− fn(0)
.

Theorem (Jordan 2018, Theorem 2.1(3))

Assume 0 < p < 1
e . Let β(p) > 2 be the solution of pβ−2 + β − 3 = 0.

Then

lim
k→∞

a(k)

kq
=

{
0 for q < β(p),

∞ for q > β(p).

This result established almost power-law behavior. We strengthen this
theorem by proving the exact limit of a(k)

kq .
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Jordan’s approach

Jordan constructed the generator Q of the continuous-time Markov
chain (deg(Vt))t≥0, over the state space N0:

qj,k =

(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1,

qj,j = −jp −
(
1− pj

)
,

qj,j+1 = jp.

The quasi-stationary distribution (a(k))∞k=1 is the left eigenvector of a
subset of Q so it holds that:

∞∑
j=k

a(j)

(
j

k

)
pk(1− p)j−k = −(k − 1)pa(k − 1)− (λ− kp − 1) a(k)

for k = 1, 2, 3, . . ..
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Jordan’s approach

For GF A(z) =
∑∞

k=0 a(k)zk we have the equation

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) + A(1− p).

Therefore the equation above implies:

A(0) = 0,

if A′(1) is finite, then A(1− p) = λA(1),

if A′(1) is non-zero and finite, then λ = 1− 2p.

Jordan found that for 0 < p < e−1 the quasi-stationary distribution a(k)
does not have q-th moment for pq−2 + q − 3 < 0 – which implied his
result.
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Our result

Theorem

If 0 < p < e−1, then the stationary distribution (a(k))∞k=0 of the pure
duplication model has asymptotic value of the coefficient for a(k)

kβ(p) as
k →∞:

1
E (1)− E (∞)

· p−
1
2 (β(p)− 32 )2Γ(β(p)− 2)

D(β(p)− 2)(p−β(p)+2 + ln(p))Γ(1− β(p))

(
1 + O(k−1)

)
where β(p) > 2 is the non-trivial solution of pβ−2 + β − 3 = 0, Γ(s) is
the Euler gamma function and

D(s) =
∞∏
i=0

(
1 + p1+i−s(s − i − 2)

)
,

E (1)− E (∞) =
1

2πi

∫
Re(s)=c

p−
1
2 (s− 12 )2 Γ(s)

D(s)
ds, for c ∈ (0, 1).
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Numerical values of constants

(a) β(p) (b) E(1)− E(∞)

(c) D(β(p)− 2) (d) p
− 12 (β(p)− 32 )2

Γ(β(p)−2)
(p−β(p)+2+ln(p))Γ(1−β(p))

Figure: Numerical values of different parts of the equation for 0 < p < e−1.
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Our proof

We want to solve the Jordan equation

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) + A(1− p),

C (w/p) = 2pC (w) + p(w − 1)C ′(w) + A(1− p).

with boundary conditions C (1) = A(0) = 0 and limw→∞ C (w) = A(1).

We are doing this via solving E (w/p) = 2pE (w) + p(w − 1)E ′(w) + K
for some constant K for which claim that the Mellin transform

E∗(s) =

∫ ∞
0

w s−1E (w) dw

exists in some fundamental strip and then by using the relation

C (w) = A(1)
E (w)− E (1)

E (∞)− E (1)
.
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Our proof

We first guess

E∗(s) = p−
1
2 (s− 12 )2 Γ(s)

D(s)

for D(s) =
∏∞

j=0

(
1 + p1+j−s(s − j − 2)

)
already used in the theorem

statement.

For 0 < p < e−1 we have D(s) = 0 only when s = j + 1 and s =
j + 1 + s∗, where s∗ is the non-trivial (i.e. other than s = 0) real solution
of ps + s − 1 = 0.

Therefore, E∗(s) has only simple, isolated poles of three types:

for s = 0,−1,−2, . . ., introduced by Γ(s),

for s = 1, 2, 3, . . ., introduced by 1
D(s) ,

for s = s∗ + 1, s∗ + 2, s∗ + 3, . . ., introduced by 1
D(s) .
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Our proof

Lemma

For Re(s) ∈ (−1, 0) and 0 < p < e−1 it holds that 1
|D(s)| is absolutely

convergent.

Figure: Example numerical values of 1
|D(c+it)| for p = 0.2 and c = −0.5.
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Our proof

We may show that

E∗(s) =
p(s − 1)

ps + ps − 2p
E∗(s − 1).

Moreover, for any given c ∈ (−1, 0) we introduce

E (w) =
1

2πi

∫
Re(s)=c

E∗(s)w−s ds =
1

2πi

∫
Re(s)=c

p−
1
2 (s− 12 )2 Γ(s)

D(s)
w−s ds,

such that it has function E∗(s) as its Mellin transform with its funda-
mental strip being {s : Re(s) ∈ (−1, 0)}.
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Our proof

We may show that both

E (∞) = lim
w→∞

E (w) = − lim
w→∞

Res
[
E∗(s)w−s , s = 0

]
= − p−

1
8

D(0)

and

E (∞)− E (1) = −Res[E (s), s = 0]− 1
2πi

∫
Re(s)=c

E∗(s) ds

= − 1
2πi

∫
Re(s)=c′

E∗(s) ds,

respectively for c ∈ (−1, 0) and c ′ ∈ (0, 1), are finite.
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Integration area
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Figure: Example integration area for E∗(s) and E(w) with s∗ = 0.7 and
M = 2.5.
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Our proof

For any c ∈ (−1, 0) and M ∈ (2, 2 + s∗) we have

C (w) =
1

E (∞)− E (1)

1
2πi

∫
Re(s)=c

E∗(s)w−s ds − E (1)

E (∞)− E (1)

= − 1
E (∞)− E (1)

(E (1) + Res[E∗(s), s = 0])

− 1
E (∞)− E (1)

(
Res
[
E∗(s)w−s , s = 1

]
+ Res

[
E∗(s)w−s , s = 2

])
− 1

E (∞)− E (1)
Res
[
E∗(s)w−s , s = s∗ + 1

]
+

1
E (∞)− E (1)

1
2πi

∫
Re(s)=M

E∗(s)w−s ds.
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Our proof

We may prove that

1
2πi

∫
Re(s)=M

E∗(s)w−s ds = O(w−M),

Res
[
E∗(s)w−s , s = 0

]
=

[
p−

1
2 (s− 12 )2 w

−s

D(s)

]
s=0

=
p−

1
8

D(0)
= −E (∞),

Res
[
E∗(s)w−s , s = 1

]
=

[
p−

1
2 (s− 12 )2Γ(s)

p1−s − (s − 2)p1−s ln(p)

w−s

D(s − 1)

]
s=1

=
p−

1
8

1 + ln(p)

w−1

D(0)
,

Res
[
E∗(s)w−s , s = s∗ + 1

]
=

[
p−

1
2 (s− 12 )2Γ(s)

p1−s − (s − 2)p1−s ln(p)

w−s

D(s − 1)

]
s=s∗+1

=
p−

1
2 (s∗+ 12 )2Γ(s∗)

p−s∗ + ln(p)

w−s
∗−1

D(s∗)
.
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Our proof

Finally, we go back from C (w) to A(z) and from w = (1−z)−1 to z and
use Flajolet-Odlyzko transfer theorem:

(1− z)α for α ∈ N is a polynomial and does not contribute to the
asymptotics of [zk ]A(z),

for α ∈ R+ \ N it holds that

[zk ](1− z)α =
k−α−1

Γ(−α)

(
1 + O

(
1
k

))
,

[zk ]o(1− z)α = o(k−α−1).

Putting all this together gives us the final result.
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Future work

The case p ≥ e−1 remains open.

We conjecture that

fn(k) = O(n−α(p)k−β(p))

for some 0 < α(p) < 1 and β(p) > 2 asymptotically.
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