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Deterministic finite automata (DFA)

DFA on alphabet {a, b}
Graph with

two outgoing edges from each
node (state), labelled a and b

An initial state q0

A set F of final states (coloured
green).

Properties

Language: the set of accepted
words

Minimal: no DFA with fewer
states accepts the same language

Acyclic: no cycles (except loops
at unique sink)

q0

q1

q2

q3

q4

a a

a

a a

b

b

b
b b

Figure: A DFA.

This is the minimal DFA recognising the language {aa, aab, ab, b, bb}.
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Counting minimal acyclic DFAs

This work: Asymptotics of the numbers mn of minimal, acyclic DFAs on a binary
alphabet with n + 1 nodes.

Studied by Domaratzki, Kisman, Shallit and Liskovets between 2002 and 2006

Best bounds were out by an exponential factor

We gave upper and lower bounds differing by a Θ(n1/4) factor, by relating
the DFAs to compacted trees.
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Compacted Binary Trees | Main result

Main result – A stretched exponential appears

Theorem

The number mn of minimal DFAs recognising a finite binary for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

where a1 ≈ −2.3381 is the largest root of the Airy function

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt.

Conjecture

Experimentally we find

mn ∼ γn!8ne3a1n
1/3

n7/8,

where

γ ≈ 76.438160702.
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What is the Airy function?

Properties

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt

Largest root a1 ≈ −2.3381

limx→∞ Ai(x) = 0

Also defined by Ai′′(x) = xAi(x)

[Banderier, Flajolet, Schaeffer,
Soria 2001]: Random Maps

[Flajolet, Louchard 2001]:
Brownian excursion area
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Bijection to decorated paths
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Bijection to decorated paths
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Highlight spanning tree given by depth first search (ignoring the sink)
I.e., Black path to each vertex is first in lexicographic order
Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right
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Bijection to decorated paths
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Bijection to decorated paths

2

3 4

5

6

7

8

1

Label nodes in post-order. By construction red edges point from a larger
number to a smaller number
→ Label pointers
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Bijection to decorated paths
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Bijection to decorated paths
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When the tree traversal...
goes up: add up step with colour matching the corresponding node.
passes a pointer:

add horizontal step
mark box corresponding to pointer label
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Decorated paths

1
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Path starts at (−1, 0) and ends at (n, n)
Path stays below diagonal (after first step)
One box is marked below each horizontal step
Each vertical step is coloured white or green

By the bijection: The number of these paths is the number dn of acyclic DFAs
with n + 1 nodes.
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Decorated paths
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Recurrence: Denote by an,m the number of paths ending at (n,m).

an,m = 2an,m−1 + (m + 1)an−1,m, for n ≥ m

a−1,0 = 1.

By the bijection: dn = an,n is the number of acyclic DFAs with n + 1 nodes.
What about minimality?
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Minimal acyclic DFAs
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For the DFA to be minimal, no state can be equivalent to a previous state:
only possible if the new node is a leaf.
If leaf is labelled m + 1, then m choices of pointer labels and state colour
must be avoided.
Leaf corresponds to → → ↑ in path.
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Recurrence for minimal DFAs
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Recurrence: Denote by bn,m the number of paths ending at (n,m).

bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1, for n ≥ m,

b−1,0 = 1.

By the bijection: mn = bn,n is the number of minimal acyclic DFAs with n + 1
nodes.
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Transforming recurrence for minimal DFAs

Recurrence: Denote by bn,m the number of paths ending at (n,m).

bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1, for n ≥ m,

b−1,0 = 1.

By the bijection: mn = bn,n is the number of minimal acyclic DFAs with n + 1
nodes.

Transformation: Define en,m by

en+m,n−m =
1

n!2m−1
bn,m.

New recurrence:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Now mn = n!2n−1e2n,0.

Weights are now closer to 1, and steps (now ↗ and ↘) always increase n.
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Heuristics

We want to understand en,m for large n.

20 40 60 80 100

5.0×1022

1.0×1023

1.5×1023

en,m

m
200 400 600 800 1000

5.0×10281

1.0×10282

1.5×10282

2.0×10282

en,m

m

Figure: Plots of en,m against m + 1. Left: n = 100, Right: n = 1000

Let’s zoom in to the left (small m) where interesting things are happening.
It seems to be converging to something...

Guess: en,m ≈ h(n)f

(
m + 1

g(n)

)
. Moreover, we guess g(n) = 3

√
n.
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√
n

)
. Moreover, we guess g(n) = 3

√
n.
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Compacted Binary Trees | Heuristics

Heuristic analysis of weighted paths

Recurrence:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Guess: en,m ≈ h(n)f

(
m + 1

3
√
n

)
.

Substitute into recurrence and set m = κ 3
√
n − 1:

sn :=
h(n)

h(n − 1)
≈ 2 +

f ′′(κ)− 2κf (κ)

f (κ)
n−2/3 + O(n−1)

Solution (assuming equality above):

sn = 2 + cn−2/3 + O(n−1) ⇒ h(n) ≈ 2ne
3c
2 n1/3

f ′′(κ) = (2κ+ c)f (κ) ⇒ f (κ) = Ai(2−2/3(2κ+ c))

Where c is constant.
Then f (0) = 0 implies c = 22/3a1, where a1 ≈ −2.338 satisfies Ai(a1) = 0.
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Compacted Binary Trees | Heuristics

Refined heuristic analysis of weighted paths

Let a1 ≈ −2.3381 be the largest root of the Airy function Ai.
First guess:

en,m ≈ h(n)f

(
m + 1

3
√
n

)
,

yields estimates

h(n) ≈ 2ne3a1(n/2)1/3

f (κ) = Ai(21/3κ+ a1)

Refined guess:

en,m ≈ h(n)

(
f0

(
m + 1

3
√
n

)
+ n−1/3f1

(
m + 1

3
√
n

))
,

yields estimates

h(n) ∼ const · 2ne3a1(n/2)1/3

n29/24

f0(κ) = Ai(21/3κ+ a1)

This way we conjecture the asymptotic form for acyclic minimal DFAs:

mn = 2n−1n!e2n,0 = Θ
(
n!8ne3a1n

1/3

n7/8
)

Elvey Price, Fang, Wallner | Bordeaux, Paris | 29.9.2020 17 / 22



Compacted Binary Trees | Heuristics

Refined heuristic analysis of weighted paths

Let a1 ≈ −2.3381 be the largest root of the Airy function Ai.
First guess:

en,m ≈ h(n)f

(
m + 1

3
√
n

)
,

yields estimates

h(n) ≈ 2ne3a1(n/2)1/3

f (κ) = Ai(21/3κ+ a1)

Refined guess:

en,m ≈ h(n)

(
f0

(
m + 1

3
√
n

)
+ n−1/3f1

(
m + 1

3
√
n

))
,

yields estimates

h(n) ∼ const · 2ne3a1(n/2)1/3

n29/24

f0(κ) = Ai(21/3κ+ a1)

This way we conjecture the asymptotic form for acyclic minimal DFAs:

mn = 2n−1n!e2n,0 = Θ
(
n!8ne3a1n

1/3

n7/8
)

Elvey Price, Fang, Wallner | Bordeaux, Paris | 29.9.2020 17 / 22



Compacted Binary Trees | Heuristics

Refined heuristic analysis of weighted paths

Let a1 ≈ −2.3381 be the largest root of the Airy function Ai.
First guess:

en,m ≈ h(n)f

(
m + 1

3
√
n

)
,

yields estimates

h(n) ≈ 2ne3a1(n/2)1/3

f (κ) = Ai(21/3κ+ a1)

Refined guess:

en,m ≈ h(n)

(
f0

(
m + 1

3
√
n

)
+ n−1/3f1

(
m + 1

3
√
n

))
,

yields estimates

h(n) ∼ const · 2ne3a1(n/2)1/3

n29/24

f0(κ) = Ai(21/3κ+ a1)

This way we conjecture the asymptotic form for acyclic minimal DFAs:

mn = 2n−1n!e2n,0 = Θ
(
n!8ne3a1n

1/3

n7/8
)

Elvey Price, Fang, Wallner | Bordeaux, Paris | 29.9.2020 17 / 22



Compacted Binary Trees | Inductive proof

Inductive proof
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Compacted Binary Trees | Inductive proof

Proof method

Recall:

en,m =
n −m + 2

n + m
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1

Number of minimal acyclic DFAs is mn = 2n−1n!e2n,0.

Method:
Find sequences An,k and Bn,k with the same asymptotic form, such that

An,k ≤ en,k ≤ Bn,k ,

for all k and all n large enough.

How to find them?

1 Use heuristics

2 Fiddle until they satisfy the recurrence of en,k with the equalities replaced
by inequalities:

= −→ ≤ and ≥
3 Prove An,k ≤ en,k ≤ Bn,k by induction.
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Compacted Binary Trees | Inductive proof

Technicalities

Lots of technicalities:
Before induction, we have to remove the negative term from the recurrence,
but we have to do so precisely for asymptotics to stay the same.
We only prove bounds for small m; we prove that large m terms don’t matter
The lower bound is negative for very large m, so we have to be careful with
induction
We only prove the bounds for sufficiently large n, but this only makes a
difference to the constant term. Proof involves colourful Newton polygons:
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Compacted Binary Trees | Inductive proof

Summary

Enumeration of minimal acyclic DFAs

1 Bijection to decorated paths

2 Recurrence for decorated paths

3 Heuristic analysis of recurrence

4 Inductive proof using heuristics

Lower bound:

mn ≥ γ1 n!8ne3a1n
1/3

n7/8,

for some constant γ1 > 0.

Upper bound (similar proof):

mn ≤ γ2 n!8ne3a1n
1/3

n7/8,

for some constant γ2 > 0.
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Compacted Binary Trees | Thank you

The end

Theorem

The number of minimal DFAs recognizing a finite binary language satisfies for
n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

where a1 ≈ −2.3381 is the largest root of the Airy function

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt.

Further problems:

Determining the constant term, or at least proving that one exists.

How does the statistic number of states in DFA for a finite binary language
interact with other natural statistics, like number of words? length of longest
word? etc.

For the method: Does anyone have a tricky recurrence to try?
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