

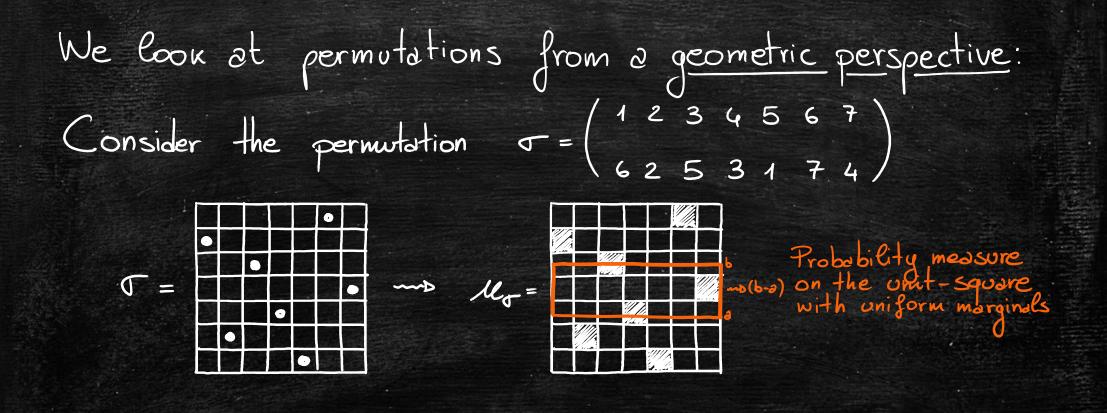
Scaling and local limits of Baxter permutations and bipolar orientations through coalescent-walk processes

Jacopo Borga

UZH ZÜRICH

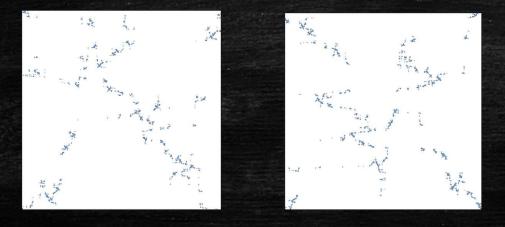
(joint work with M. Maazoun)

Permuton limits



Def: A <u>PERMUTON</u> is a probability measure on the square $[0,1]^2$ with uniform marginals. Remork: We have a natural notion of convergence of such objects: the <u>WEAK CONVERGENCE</u>. This defines a nice compact Polish space. - D limits of permutons are permutons, i.e., potential limits of sequences of permutations also have uniform marginals.

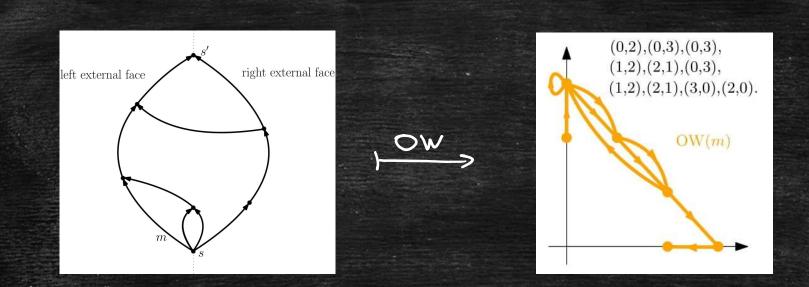
DOROS & Par (2014) explored the expected shope of doubly alternating Baxter permutations, i.e. Baxter perm. J s.t. J and J' are alternating and they claimed that IT WOULD BE NICE TO COMPUTE THE LIMIT SHAPE OF BAXTER PERMUTATIONS



11

Bipolar orientations and walks in cones

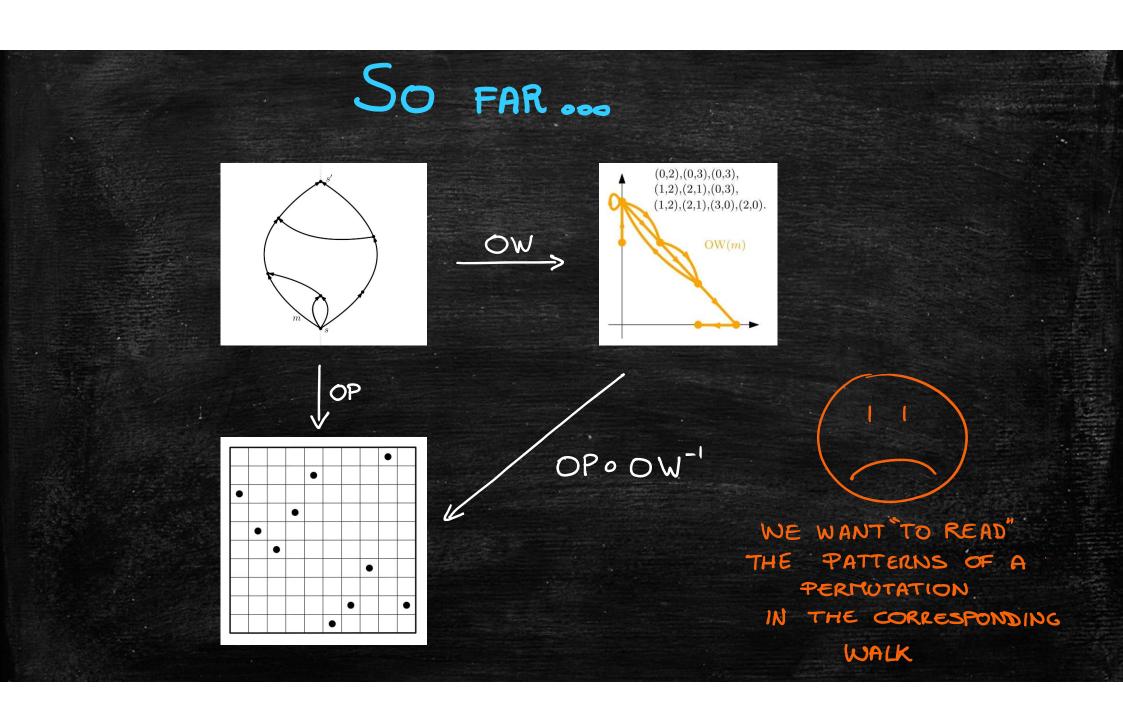
Bonichon, Bousquet-Mélou & Fusy (2011) showed that Baxter permutations are in bijection with plane bipolar orientations. Def: A PLANE BIPOLAR ORIENTATION is a planar map (connected graphs properly embedded in the plane up to continuous deformations) equipped with an <u>acyclic</u> orientation of the edges with exactly one <u>source</u> (a vertex with only outgoing edges) and one <u>sink</u> (a vertex with only incoming edges) both on the outer face.



Kenyon, Miller, Sheffield & Wilson (2019) constructed a bijection OW from bifolar orientations to a specific family of two-dimensional walks in the non-negative quadrant, called TANDEM WALKS.

THEOREM: (Gwynne, Holden, Sun 2016)

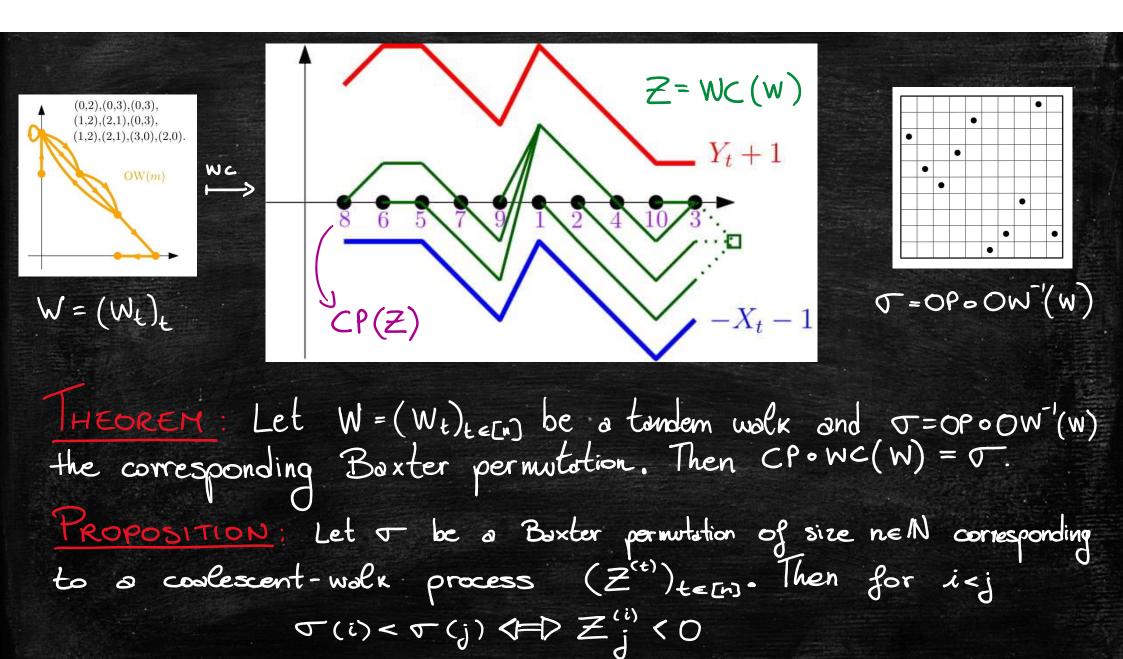
The pairs of height functions for an infinite-volume random bipolar Eriangulation and its dual converge jointly in law to the two Brownian motions which encode the same V413-LQG surface deconded by both an SLE12 and the "dual" SLE12 which travels in a perpendicular direction.

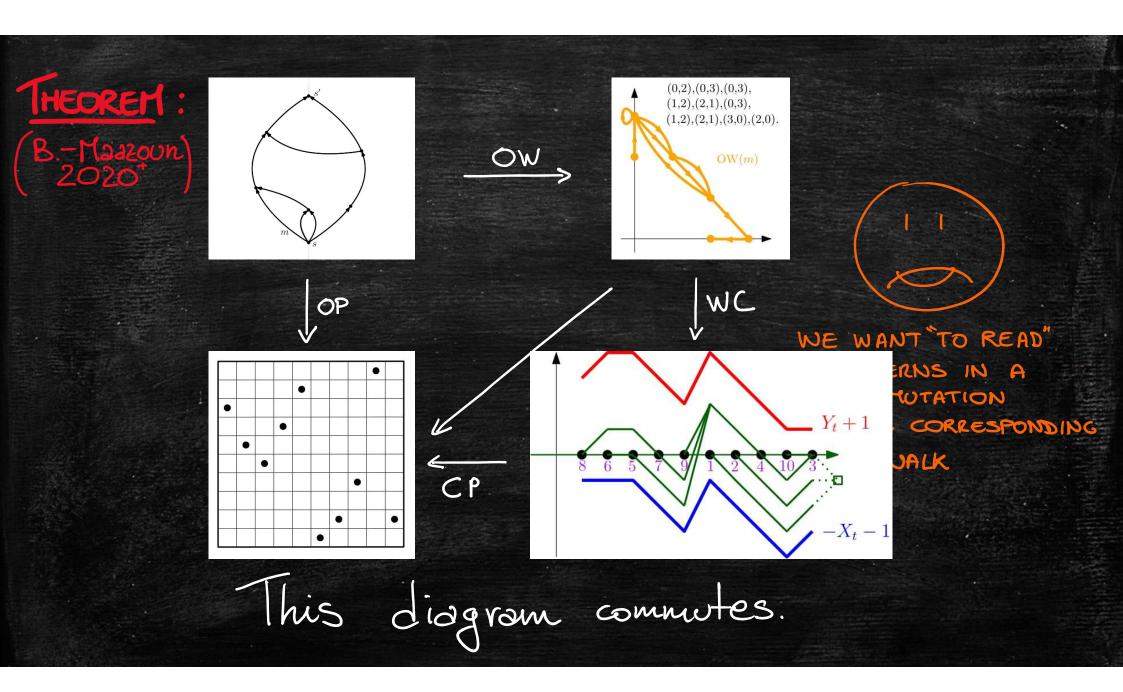


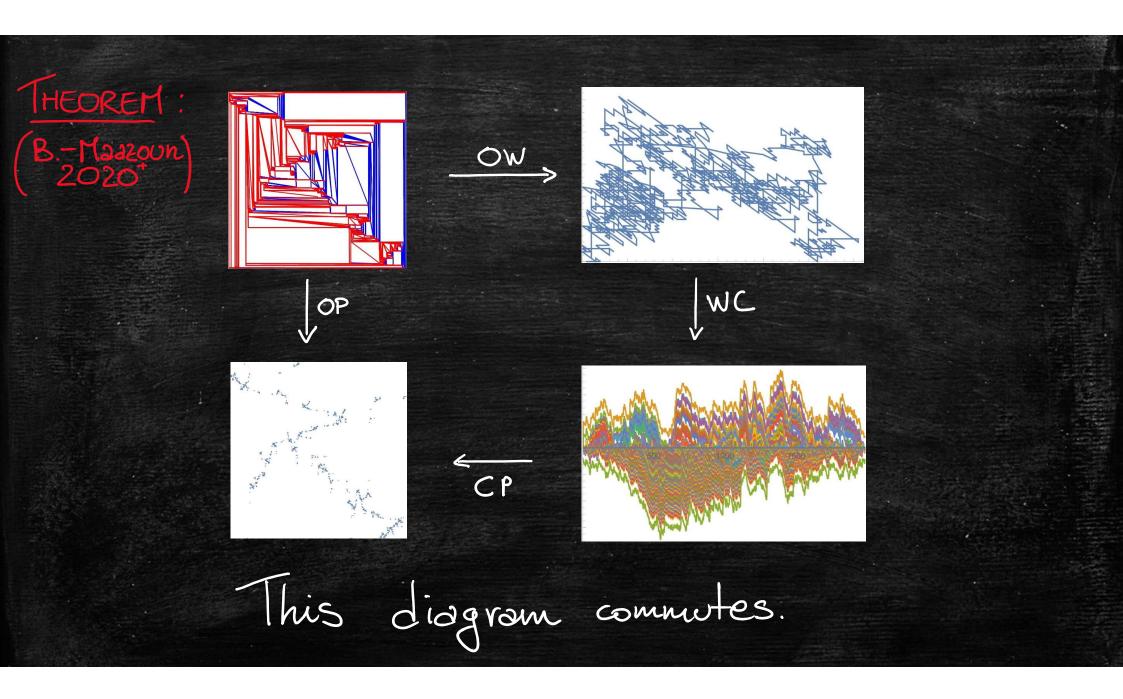
Coalescent-walk processes

Let $W_{\ell}=(X_{\ell}, Y_{\ell})$ be a tandem walk $d = OP \circ OW'(W)$ be the corresponding Boxter permutation. IDEA: Given i<j, we want to find a way in order to "read" in WE if $\tau(i) < \tau(j)$ or $\tau(j) < \tau(i)$. SOLUTION : COALESCENT - WALK PROCESSES i.e. a collection of walks $(\mathcal{Z}_{i\geq k})_{t}$ that "follow" Yt when they are positive and -Xt when they are negative.

Def: Let
$$(W_{t})_{t\in[n]} = (X_{t}, X_{t})_{t\in[n]}$$
 be a tandem walk of length n.e.N.
The COALESCENT-WALK PROCESS associated to $(W_{t})_{t\in[n]}$ is a
collection of n one-dimensional walks $(Z^{(1)})_{t\in[n]} =: NC(W)$
defined for every $t\in[n]$ by:
 $Z_{k-1}^{(t)} = 0$ $Z_{k}^{(t)} = \begin{cases} 2_{k-1}^{(0)} + (Y_{k} - Y_{k-1}) & \text{if } Z_{k-1}^{(0)} > 0 \\ Z_{k-1}^{(1)} + (Y_{k} - Y_{k-1}) & \text{if } Z_{k-1}^{(1)} < 0 & X Z_{k-1}^{(0)} - (X_{k} - X_{k-1}) < 0 \\ Y_{k} - Y_{k-1} & \text{if } Z_{k-1}^{(1)} < 0 & X Z_{k-1}^{(0)} - (X_{k} - X_{k-1}) > 0 \end{cases}$







Scaling limits of coalescent-walk processes

The continuous coolescent-walk process

Consider a two dimensional process
$$W(t) = (X(t), Y(t))_{t \in I}$$
 and the
following jamily of stochastic differential equations (SDEs) indexed by $x \in I$
 $dZ^{(u)}(t) = 1/2Z^{(u)}(t) > 0$ $dY(t) - 1/2Z^{(u)}(t) \le 0$ $dX(t), t \in (u, \infty) \cap I,$
 $Z^{(u)}(t) = 0, t \in (-\infty, u) \cap I.$

<u>THEOREN</u> (Provaj 2013, Çağlar - Hajri-Karakos 2018) Let (W(E))_{te I} be a two-dimensional Brownian motion with covariance matrix $\binom{1}{j} \binom{1}{1}$ for some $p \in (-1, 1)$. Fix $k \in I$. We have <u>path-wise oniqueness</u> and <u>existence</u> of a strong solution for the SDE (\times) driven by W(t). $\begin{cases} dZ^{(u)}(t) = \iint_{\{Z^{(u)}(t)>0\}} dY(t) - \iint_{\{Z^{(u)}(t)\leq 0\}} dX(t) \ t>u, \ u \in \mathbb{R} \ \& \ W(t) = (X(t), Y(t)) \\ a \text{ two-dim. BM} \\ Z^{(u)}(t) = 0, \ t \leq u \\ \text{ with } \omega v. \left(\frac{1-y_{1}}{-y_{2}} \right) \end{cases}$

The previous theorem + Fubini-Tonelli imply that: For almost every w, $Z^{(u)}$ is a solution for almost every u.

Def: We call <u>CONTINUOUS</u> <u>COALESCENT-WALK PROCESS</u> (driven by W) the collection of solutions $\{Z^{(u)}\}_{u\in\mathbb{R}}$ where properly defined.

Let
$$W = (\overline{X}, \overline{Y}) = (\overline{X}_{K}, \overline{Y}_{K})_{K \ge 0}$$
 be a two dimensional random walk
having value $(0, 0)$ at time 0 and step distribution
 $Y = \frac{1}{2} S_{(+1, -1)} + \sum_{i,j \ge 0} Z^{-i-j-3} S_{(-i,j)}$
Propositions: The following is a uniform tandem walk of lenght n:
 $W_{n} := ((\overline{W}_{L})_{1 \le t \le n} | \overline{W}_{0} = (0, 0), \overline{W}_{n+1} = (0, 0), (\overline{W}_{L})_{0 \le t \le n+1} \in (\mathbb{Z}_{\ge 0}^{2})^{n})$
Let W_{n} be the associated rescaled continuous process that interpolates the atapa of W_{n} .
HEOREM: Let $uc(0, 1)$. We have the following joint convergence in $C([0,1], \mathbb{R})^{3}$
 $B = \frac{1}{2020} (W_{n}, Z_{n}^{(n)}) - \frac{1}{n \ge 0} (W_{C}, Z_{C}^{(n)})$
he walk starting at time at U in the guarant with an $(\frac{1}{2})$ continuous
securited to W_{n} .

THEOREM: Let
$$\sigma_n$$
 be a uniform Daxter permutation of size n.
(*255500) We have the following convergence in the space of permutans
 $\mathcal{M}_{\sigma_n} \xrightarrow{d} \mathcal{M}_{\mathcal{Y}} := \phi(\{\mathcal{X}_{e}^{m}\}_{\mathcal{M}_{e}(0,1)})$
Proof based on:
Proof based on:
BAXTER PRHITTON
B

Final comments

- Our results imply convergence of <u>finite-volume bip-orientations</u> to a V4/3 -LQG. What is the connection between our approach and the LQG approach?
 The converge of all the objects (wolks, permetations, mp, colouelx proc.) holds jointly.
 We also proved joint <u>Benjamini-Schramm local limits</u> (both in the ANNEALED & QUENCHED sense) for all the objects involved in the commutative diagram.
- We believe that our <u>techniques</u> are <u>rather general</u>: we would like to consider other families of permutations (and maps?) encoded by two-dimensional walks.
- We would also like to investigate better the Baxter permuton. For instance, what is $\mathbb{E}\left[\mathcal{M}_{\mathcal{Z}e}\right] = ?$.

