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Introduction

Sources:
I We consider sources defined by two classical related partitions:

Sturm source (Farey partitions)
Stern-Brocot source (Stern-Brocot partitions).

I The Sturm source produces characteristic Sturmian words.
I These two partitions have zero Shannon entropy (h = 0).

Tries:
I We use tries to differentiate these two sources.
I For good sources, with entropy h > 0,

the average trie depth is ∼
logn

h
.

Our main result is the following:

Theorem

The average trie depths for these sources are:

Sturm source: ∼
24

π3/2

√
n

Stern-Brocot source: ∼
3

π2
log2 n
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Sources defined by partitions
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Let Σ = {0, 1} and let {Pk}k>0 be a family of partitions of [0, 1]

Pk = {Iw : w ∈ Σk} where max
w∈Σk

|Iw|→ 0 (k→∞)

consisting of closed intervals such that:

I Iε = [0, 1]
I For k > 0 and w ∈ Σk, Iw0 and Iw1 partition Iw (left to right).



Dirichlet generating functions (DGFs)
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Such a family of partition defines a probabilistic source where

pw := |Iw|

is the probability of emitting prefix w.

The Dirichlet generating function (DGF) of this source is defined as:

Λ(s) :=
∑
w∈Σ?

psw =
∑
k>0

∑
w∈Σk

psw.



Sturm and Stern-Brocot sources

Sturm source is defined by
Farey partitions Sk

S0 := [0/1, 1/1]

Sk arises from Sk−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

only if c+ d 6 k+ 1

Stern-Brocot source is defined by
Stern-Brocot partitions Bk

B0 := [0/1, 1/1]

Bk arises from Bk−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

(always)

S0 : 0/1 1/1

S1 : 1/2

S2 : 1/3 2/3

S3 : 1/4 3/4

S4 : 1/5 2/5 3/5 4/5
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Sturm source is defined by
Farey partitions Sk

S0 := [0/1, 1/1]

Sk arises from Sk−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

only if c+ d 6 k+ 1

Stern-Brocot source is defined by
Stern-Brocot partitions Bk

B0 := [0/1, 1/1]

Bk arises from Bk−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

(always)

B0 : 0/1 1/1
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DGF for the Sturm source

I If Iw =
[a
c

,
b

d

]
∈ Sk, then |Iw| =

1

cd
and gcd(c,d) = 1.

I The set of pairs (c,d) for which some
[a
c

,
b

d

]
∈ Sk is

Ck = {(c,d) : max(c,d) 6 k+ 1, c+ d > k+ 1, and gcd(c,d) = 1}

I Since |{k > 0 : (c,d) ∈ Ck}| = min(c,d) whenever gcd(c,d) = 1,

Λ(s) =
∑
k>0

∑
(c,d)∈Ck

(
1

cd

)s
=

∑
c>1,d>1

gcd(c,d)=1

min(c,d)

(cd)s
.

Proposition

The DGF Λ for the Sturm source is:

Λ(s) = 1 + 2
ζ(s, s− 1)

ζ(2s− 1)
where ζ(α,β) :=

∑
c>1

1

cβ

∑
d:d>c

1

dα
.

Here:
I the denominator ζ(2s− 1) arises from the gcd(c,d) = 1 condition,
I the numerator ζ(s, s− 1) arises from the min(c,d) term.



DGF for the Stern-Brocot source
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The dynamical system associated with the

Farey map T : [0, 1]→ [0, 1]

x 7→

{
x/(1 − x) if x ∈ [0, 1/2]

(1 − x)/x if x ∈ [1/2, 1]

generates the Stern-Brocot partitions Bk.

Let:
a be the inverse of the left branch of T ,
b be the inverse of the right branch of T ,

and H = {a,b}.

Hk := {a,b}k is the set of inverses
branches of Tk and generates Bk:

Bk = {h([0, 1]) : h ∈ Hk}.



DGF for the Stern-Brocot source

Since
Bk = {h([0, 1]) : h ∈ Hk},

for each k > 0 we have that

Λk(s) =
∑
w∈Σk

psw =
∑
h∈Hk

|h(1) − h(0)|s = Hks [1](0, 1)

where Hs is a variant of the transfer operator for the Farey map.

Hence, if H? =
⋃
k>0 H

k, then

Λ(s) =
∑
w∈Σ?

psw =
∑
h∈H?

|h(1) − h(0)|s = (I−Hs)
−1[1](0, 1).



DGF for the Stern-Brocot source

Farey map1

0 1

Gauss map1

0 1

The induced map of the Farey map (associated with Stern-Brocot
partitions) is the Gauss map (associated with continued fractions).

In fact, (am−1 ◦ b)(x) = 1

m+ x
(an inverse branch of the Gauss map).

Note that H? = {a,b}? = (a? ◦ b)? ◦ a?.

Proposition

For the DGF of the Stern-Brocot source,

Λ(s) = (I−Hs)
−1[1](0, 1) = (I−As)

−1(I−Gs)
−1[1](0, 1)

where
I As is the part of Hs corresponding to inverse branch a, and
I Gs is a variant of the transfer operator of the Gauss map.
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Tries from words emitted by a source

x1 = cacccaaac . . .
x2 = aaacacbac . . .
x3 = aaabcbbca . . .
x4 = bacbaabcc . . .
x5 = bcabbbbbc . . .
x6 = bacaabbba . . .
x7 = ccbacbcbb . . .
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I Let T be a trie on n words independently drawn from a source.

I We perform a probabilistic analysis of the shape of T.

I We focus on trie depth Dn, the depth of a random branch.

I If D
(i)
n is the depth of the branch corresponding to the i-th word,

Pr[Dn > k+ 1] =
1

n

n∑
i=1

Pr[D(i)
n > k+ 1] =

∑
w∈Σk

pw[1 − (1 − pw)
n−1].



Average trie depth and DGFs

Proposition

(i) If Λ(s) is well-defined for s > 2, then

E[Dn] =
1

n

n∑
`=2

(−1)`
(
n

`

)
`Λ(`).

(ii) If ∃a,A > 0 such that ∀k > 1, ∃w ∈ Σk such that pw > Ak−a,

E[Drn] =∞, ∀r > 2.

Remarks

I Both statements (i) and (ii) apply to our two sources.

I Statement (ii) applies to our sources with w = 000 . . . 0 (k times).

I In order to find estimates for E[Dn], we will study

f(n) := nE[Dn] =
n∑
`=2

(−1)`
(
n

`

)
`Λ(`)︸ ︷︷ ︸
=:p(`)

.



Rice method: Step 1 – Integral representation

It applies to binomial sums

f(n) =

∞∑
`=a

(−1)`
(
n

`

)
p(`)

for some ` 7→ p(`) for ` > a
(where a > 0).

<s

=s

c a a+ 1 · · ·

M

−M

M

<s=b

Rice method: Step 1

If ψ(s) is a lifting of p(`) and ∃c ∈ ]a− 1,a[ such that:

ψ(s) is analytic and of polynomial growth in the half-plane <s > c,

then ∀b ∈ ]c,a[ and sufficiently large n:

f(n) =
1

2πi

∫b+i∞
b−i∞ Ln(s) ·ψ(s)ds where Ln(s) =

Γ(n+ 1)Γ(−s)

Γ(n+ 1 − s)
.



Rice method: Step 2 – shifting to the left

The integral representation is
shifted to the left, using the
tameness of ψ to the left
(meromorphic and of
polynomial growth).

<s

=s

c−δ0 c

M

−M

<s=b

<s=c−δ

Rice method: Step 2

If for some δ0 > 0, the lifting ψ satisfies that:

I it is meromorphic on <s > c− δ0,

I its only pole on <s > c− δ0 is at s = c, and

I ∀δ < δ0, ψ(s) is of polynomial growth on <s > c− δ as |=s|→∞,

then ∀δ < δ0

f(n) = Res[Ln(s) ·ψ(s); s = c] +O(nc−δ) (n→∞).



Rice method: Step 3 – estimating the residue

Rice method: Step 3

The residue

Res[Ln(s) ·ψ(s); s = c] = nc · P(logn) [1 +O(1/n)]

where P is a polynomial determined by the singular expression

ψ(s) � ad
1

(s− c)d
+ · · ·+ a1

1

s− c
+ a0,

according to the following two cases:

1. If c is not an integer, then

P has degree d− 1 and leading coefficient
Γ(−c)

Γ(d)
|ad|.

2. If c is an integer, then

P has degre d and leading coefficient
1

Γ(d+ 1)
|ad|.

If c = 1, the factor [1 +O(1/n)] equals 1.
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Singularity analysis for the Sturm source

Recall that for Sturm source: Λ(s) = 1 + 2
ζ(s, s− 1)

ζ(2s− 1)
.

Because of well-known properties of the zeta function:

Proposition

For any a0 > 0, the DGF Λ(s) of the Sturm source satisfies:

I it is meromorphic on <s > 1 + a0,

I its only pole is a simple pole at s = 3/2,

I ∀a > a0, it is of polynomial growth on <s > 1 + a.

Moreover, as s→ 3/2,

sΛ(s) ∼
36

π2

(
1

2s− 3

)
and Γ(−s) · sΛ(s) ∼ 36

π2
Γ

(
−3

2

)(
1

2s− 3

)
.

Since Γ(−3/2) = (4/3)
√
π, in Step 3 of the Rice method we have:

The DGF Λ(s) of the Sturm source satisfies:

Res

[
Ln(s) · sΛ(s); s =

3

2

]
=

24

π3/2
n3/2

(
1 +O

(
1

n

))
.



Singularity analysis for the Stern-Brocot source

Recall that for Stern-Brocot: Λ(s) = (I−As)
−1(I−Gs)

−1[1](0, 1).

Because of deep properties of the quasi-inverse of Gs:

Proposition

The DGF Λ(s) of the Stern-Brocot source satisfies:

I it is meromorphic on <s > 1 − δ0 (for some δ0 > 0),

I its only pole is at s = 1 and is of order 2,

I ∀δ < δ0, it is of polynomial growth on <s > 1 − δ.

Moreover, as s→ 1,

sΛ(s) ∼
1

ζ(2)

(
1

s− 1

)2

and Γ(−s) · sΛ(s) ∼ 6

π2

(
1

s− 1

)3

.

Hence, for Step 3 of the Rice method we have:

The DGF Λ(s) of the Stern-Brocot source satisfies:

Res[Ln(s) · sΛ(s); s = 1] = n

(
3

π2
log2 n+ b1 logn+ b0

)
for some constants b1 and b0.



Main results

We are ready to apply the Rice method to

f(n) := nE[Dn] =
n∑
`=2

(−1)`
(
n

`

)
`Λ(`)

for our sources. We show that the two sources behave very differently.

Theorem

For each source, consider a trie built on n words independently drawn
from the source. Then, the mean values of the trie depths are:

I For the Sturm source:

E[Dn] =
24

π3/2
n1/2 +O(na) for any a > 0.

I For the Stern-Brocot source:

E[Dn] =
3

π2
log2 n+ b1 logn+ b0 +O(n

−δ) for some δ > 0

and some constants b1 and b0.



Concluding remarks and future work
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I These are instances of tries built on seven words emitted from the
Sturm source (on the left), the Stern-Brocot source (in the middle),
and the Bernoulli source with p = 1/2 (on the right)

I As the value n = 7 is small, and the moments E[D2
n] for the Sturm

source and the Stern-Brocot are infinite, there does not really exist a
“typical trie” for these sources.



Concluding remarks and future work

This work appears as (one of) the first study on sources of zero Shannon
entropy via Analytic Combinatorics tools.

1. Rényi entropy:
I The Rényi entropy for our two sources are very similar
I Known via Number Theory arguments
I TO DO: Derive these results using Analytic Combinatorics.

2. The VLMC (Variable Length Markov Chain):
I Are the simplest source where dependency from the past is

unbounded
I The depth of the associated suffix tries has been studied before on a

special class of VLMC sources
I TO DO: Analyze the trie depth in an intermittent subclass

3. Trie built on the Farey dynamical source
I Its invariant measure is 1/t which has infinite mass
I Not clearly related fundamental probabilities with Stern-Brocot

source
I Strongly different from absolutely continuous invariant measure
I TO DO: We wish to analyze its trie depth



Thank you very much
for your attention!
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